
Python Data
Analytics

With Pandas, NumPy, and Matplotlib
—
Second Edition
—
Fabio Nelli

Python Data Analytics
With Pandas, NumPy,

and Matplotlib

Second Edition

Fabio Nelli

Python Data Analytics

ISBN-13 (pbk): 978-1-4842-3912-4 ISBN-13 (electronic): 978-1-4842-3913-1
https://doi.org/10.1007/978-1-4842-3913-1

Library of Congress Control Number: 2018957991

Copyright © 2018 by Fabio Nelli

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Todd Green
Development Editor: James Markham
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484239124. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Fabio Nelli
Rome, Italy

https://doi.org/10.1007/978-1-4842-3913-1

“Science leads us forward in knowledge, but only analysis
makes us more aware”

This book is dedicated to all those who are constantly
looking for awareness

v

About the Author ���xvii

About the Technical Reviewer ��xix

Table of Contents

Chapter 1: An Introduction to Data Analysis ��� 1

Data Analysis �� 1

Knowledge Domains of the Data Analyst �� 3

Computer Science ��� 3

Mathematics and Statistics ��� 4

Machine Learning and Artificial Intelligence ��� 5

Professional Fields of Application�� 5

Understanding the Nature of the Data �� 5

When the Data Become Information �� 6

When the Information Becomes Knowledge ��� 6

Types of Data ��� 6

The Data Analysis Process �� 6

Problem Definition ��� 8

Data Extraction �� 9

Data Preparation �� 10

Data Exploration/Visualization ��� 10

Predictive Modeling ��� 12

Model Validation �� 13

Deployment ��� 13

Quantitative and Qualitative Data Analysis ��� 14

Open Data �� 15

Python and Data Analysis �� 17

Conclusions ��� 17

vi

Chapter 2: Introduction to the Python World ��� 19

Python—The Programming Language �� 19

Python—The Interpreter�� 21

Python 2 and Python 3 �� 23

Installing Python �� 23

Python Distributions �� 24

Using Python �� 26

Writing Python Code �� 28

IPython ��� 35

PyPI—The Python Package Index ��� 39

The IDEs for Python ��� 40

SciPy ��� 46

NumPy ��� 47

Pandas ��� 47

matplotlib �� 48

Conclusions ��� 48

Chapter 3: The NumPy Library �� 49

NumPy: A Little History�� 49

The NumPy Installation ��� 50

Ndarray: The Heart of the Library �� 50

Create an Array �� 52

Types of Data ��� 53

The dtype Option ��� 54

Intrinsic Creation of an Array ��� 55

Basic Operations ��� 57

Arithmetic Operators ��� 57

The Matrix Product �� 59

Increment and Decrement Operators �� 60

Universal Functions (ufunc) ��� 61

Aggregate Functions ��� 62

Table of ConTenTs

vii

Indexing, Slicing, and Iterating �� 62

Indexing ��� 63

Slicing �� 65

Iterating an Array ��� 67

Conditions and Boolean Arrays ��� 69

Shape Manipulation �� 70

Array Manipulation �� 71

Joining Arrays �� 71

Splitting Arrays �� 72

General Concepts �� 74

Copies or Views of Objects �� 75

Vectorization �� 76

Broadcasting ��� 76

Structured Arrays �� 79

Reading and Writing Array Data on Files ��� 82

Loading and Saving Data in Binary Files ��� 82

Reading Files with Tabular Data �� 83

Conclusions ��� 84

Chapter 4: The pandas Library—An Introduction ��� 87

pandas: The Python Data Analysis Library �� 87

Installation of pandas �� 88

Installation from Anaconda �� 88

Installation from PyPI��� 89

Installation on Linux �� 90

Installation from Source �� 90

A Module Repository for Windows ��� 90

Testing Your pandas Installation ��� 91

Getting Started with pandas ��� 92

Introduction to pandas Data Structures �� 92

The Series �� 93

Table of ConTenTs

viii

The DataFrame �� 102

The Index Objects �� 112

Other Functionalities on Indexes ��� 114

Reindexing ��� 114

Dropping ��� 117

Arithmetic and Data Alignment �� 118

Operations Between Data Structures �� 120

Flexible Arithmetic Methods �� 120

Operations Between DataFrame and Series �� 121

Function Application and Mapping �� 122

Functions by Element �� 123

Functions by Row or Column ��� 123

Statistics Functions ��� 125

Sorting and Ranking ��� 126

Correlation and Covariance ��� 129

“Not a Number” Data �� 131

Assigning a NaN Value ��� 131

Filtering Out NaN Values �� 132

Filling in NaN Occurrences �� 133

Hierarchical Indexing and Leveling ��� 134

Reordering and Sorting Levels �� 137

Summary Statistic by Level ��� 138

Conclusions ��� 139

Chapter 5: pandas: Reading and Writing Data �� 141

I/O API Tools �� 141

CSV and Textual Files �� 142

Reading Data in CSV or Text Files ��� 143

Using RegExp to Parse TXT Files ��� 146

Reading TXT Files Into Parts �� 148

Writing Data in CSV ��� 150

Table of ConTenTs

ix

Reading and Writing HTML Files ��� 152

Writing Data in HTML ��� 153

Reading Data from an HTML File ��� 155

Reading Data from XML �� 157

Reading and Writing Data on Microsoft Excel Files �� 159

JSON Data ��� 162

The Format HDF5 �� 166

Pickle—Python Object Serialization ��� 168

Serialize a Python Object with cPickle �� 168

Pickling with pandas ��� 169

Interacting with Databases ��� 170

Loading and Writing Data with SQLite3 ��� 171

Loading and Writing Data with PostgreSQL ��� 174

Reading and Writing Data with a NoSQL Database: MongoDB �� 178

Conclusions ��� 180

Chapter 6: pandas in Depth: Data Manipulation ��� 181

Data Preparation ��� 181

Merging ��� 182

Concatenating ��� 188

Combining ��� 191

Pivoting �� 193

Removing ��� 196

Data Transformation �� 197

Removing Duplicates ��� 198

Mapping ��� 199

Discretization and Binning �� 204

Detecting and Filtering Outliers ��� 209

Permutation �� 210

Random Sampling ��� 211

Table of ConTenTs

x

String Manipulation ��� 212

Built-in Methods for String Manipulation �� 212

Regular Expressions �� 214

Data Aggregation �� 217

GroupBy ��� 218

A Practical Example ��� 219

Hierarchical Grouping �� 220

Group Iteration �� 222

Chain of Transformations ��� 222

Functions on Groups �� 224

Advanced Data Aggregation �� 225

Conclusions ��� 229

Chapter 7: Data Visualization with matplotlib �� 231

The matplotlib Library ��� 231

Installation �� 233

The IPython and IPython QtConsole �� 233

The matplotlib Architecture ��� 235

Backend Layer ��� 236

Artist Layer �� 236

Scripting Layer (pyplot) ��� 238

pylab and pyplot �� 238

pyplot �� 239

A Simple Interactive Chart ��� 239

The Plotting Window ��� 241

Set the Properties of the Plot �� 243

matplotlib and NumPy ��� 246

Using the kwargs �� 248

Working with Multiple Figures and Axes ��� 249

Adding Elements to the Chart ��� 251

Adding Text �� 251

Table of ConTenTs

xi

Adding a Grid ��� 256

Adding a Legend �� 257

Saving Your Charts �� 260

Saving the Code ��� 260

Converting Your Session to an HTML File �� 262

Saving Your Chart Directly as an Image ��� 264

Handling Date Values ��� 264

Chart Typology ��� 267

Line Charts �� 267

Line Charts with pandas �� 276

Histograms �� 277

Bar Charts ��� 278

Horizontal Bar Charts��� 281

Multiserial Bar Charts �� 282

Multiseries Bar Charts with pandas Dataframe ��� 285

Multiseries Stacked Bar Charts ��� 286

Stacked Bar Charts with a pandas Dataframe �� 290

Other Bar Chart Representations ��� 291

Pie Charts �� 292

Pie Charts with a pandas Dataframe ��� 296

Advanced Charts ��� 297

Contour Plots ��� 297

Polar Charts ��� 299

The mplot3d Toolkit ��� 302

3D Surfaces ��� 302

Scatter Plots in 3D ��� 304

Bar Charts in 3D �� 306

Multi-Panel Plots ��� 307

Display Subplots Within Other Subplots �� 307

Grids of Subplots ��� 309

Conclusions ��� 312

Table of ConTenTs

xii

Chapter 8: Machine Learning with scikit-learn �� 313

The scikit-learn Library ��� 313

Machine Learning ��� 313

Supervised and Unsupervised Learning �� 314

Training Set and Testing Set �� 315

Supervised Learning with scikit-learn �� 315

The Iris Flower Dataset ��� 316

The PCA Decomposition �� 320

K-Nearest Neighbors Classifier ��� 322

Diabetes Dataset ��� 327

Linear Regression: The Least Square Regression ��� 328

Support Vector Machines (SVMs) �� 334

Support Vector Classification (SVC) ��� 334

Nonlinear SVC �� 339

Plotting Different SVM Classifiers Using the Iris Dataset �� 342

Support Vector Regression (SVR)��� 345

Conclusions ��� 347

Chapter 9: Deep Learning with TensorFlow �� 349

Artificial Intelligence, Machine Learning, and Deep Learning ��� 349

Artificial intelligence �� 350

Machine Learning Is a Branch of Artificial Intelligence ��� 351

Deep Learning Is a Branch of Machine Learning ��� 351

The Relationship Between Artificial Intelligence, Machine Learning, and Deep Learning ��� 351

Deep Learning ��� 352

Neural Networks and GPUs ��� 352

Data Availability: Open Data Source, Internet of Things, and Big Data �������������������������������� 353

Python ��� 354

Deep Learning Python Frameworks �� 354

Artificial Neural Networks ��� 355

How Artificial Neural Networks Are Structured ��� 355

Single Layer Perceptron (SLP) ��� 357

Table of ConTenTs

xiii

Multi Layer Perceptron (MLP) �� 360

Correspondence Between Artificial and Biological Neural Networks ���������������������������������� 361

TensorFlow �� 362

TensorFlow: Google’s Framework �� 362

TensorFlow: Data Flow Graph �� 362

Start Programming with TensorFlow ��� 363

Installing TensorFlow ��� 363

Programming with the IPython QtConsole ��� 364

The Model and Sessions in TensorFlow ��� 364

Tensors �� 366

Operation on Tensors ��� 370

Single Layer Perceptron with TensorFlow ��� 371

Before Starting �� 372

Data To Be Analyzed �� 372

The SLP Model Definition �� 374

Learning Phase �� 378

Test Phase and Accuracy Calculation �� 383

Multi Layer Perceptron (with One Hidden Layer) with TensorFlow ��� 386

The MLP Model Definition �� 387

Learning Phase �� 389

Test Phase and Accuracy Calculation �� 395

Multi Layer Perceptron (with Two Hidden Layers) with TensorFlow �� 397

Test Phase and Accuracy Calculation �� 402

Evaluation of Experimental Data�� 404

Conclusions ��� 407

Chapter 10: An Example— Meteorological Data �� 409

A Hypothesis to Be Tested: The Influence of the Proximity of the Sea �������������������������������������� 409

The System in the Study: The Adriatic Sea and the Po Valley ��� 410

Finding the Data Source �� 414

Data Analysis on Jupyter Notebook �� 415

Analysis of Processed Meteorological Data �� 421

Table of ConTenTs

xiv

The RoseWind ��� 436

Calculating the Mean Distribution of the Wind Speed ��� 441

Conclusions ��� 443

Chapter 11: Embedding the JavaScript D3 Library in the IPython Notebook ������� 445

The Open Data Source for Demographics ��� 445

The JavaScript D3 Library ��� 449

Drawing a Clustered Bar Chart ��� 454

The Choropleth Maps �� 459

The Choropleth Map of the U�S� Population in 2014 �� 464

Conclusions ��� 471

Chapter 12: Recognizing Handwritten Digits �� 473

Handwriting Recognition ��� 473

Recognizing Handwritten Digits with scikit-learn ��� 474

The Digits Dataset ��� 475

Learning and Predicting �� 478

Recognizing Handwritten Digits with TensorFlow ��� 480

Learning and Predicting �� 482

Conclusions ��� 486

Chapter 13: Textual Data Analysis with NLTK ��� 487

Text Analysis Techniques �� 487

The Natural Language Toolkit (NLTK) ��� 488

Import the NLTK Library and the NLTK Downloader Tool ��� 489

Search for a Word with NLTK ��� 493

Analyze the Frequency of Words ��� 494

Selection of Words from Text ��� 497

Bigrams and Collocations �� 498

Use Text on the Network ��� 500

Extract the Text from the HTML Pages �� 501

Sentimental Analysis ��� 502

Conclusions ��� 506

Table of ConTenTs

xv

Chapter 14: Image Analysis and Computer Vision with OpenCV �������������������������� 507

Image Analysis and Computer Vision �� 507

OpenCV and Python ��� 508

OpenCV and Deep Learning �� 509

Installing OpenCV �� 509

First Approaches to Image Processing and Analysis��� 509

Before Starting �� 510

Load and Display an Image ��� 510

Working with Images ��� 512

Save the New Image�� 514

Elementary Operations on Images �� 514

Image Blending �� 520

Image Analysis �� 521

Edge Detection and Image Gradient Analysis ��� 522

Edge Detection �� 522

The Image Gradient Theory ��� 523

A Practical Example of Edge Detection with the Image Gradient Analysis �������������������������� 525

A Deep Learning Example: The Face Detection ��� 532

Conclusions ��� 535

Appendix A: Writing Mathematical Expressions with LaTeX �������������������������������� 537

 With matplotlib �� 537

 With IPython Notebook in a Markdown Cell �� 537

 With IPython Notebook in a Python 2 Cell ��� 538

 Subscripts and Superscripts ��� 538

Fractions, Binomials, and Stacked Numbers �� 538

 Radicals �� 539

 Fonts ��� 539

 Accents ��� 540

Table of ConTenTs

xvi

Appendix B: Open Data Sources ��� 549

Political and Government Data �� 549

Health Data ��� 550

Social Data �� 550

Miscellaneous and Public Data Sets ��� 551

Financial Data ��� 552

Climatic Data ��� 552

Sports Data ��� 553

Publications, Newspapers, and Books �� 553

Musical Data ��� 553

Index ��� 555

Table of ConTenTs

xvii

About the Author

Fabio Nelli is a data scientist and Python consultant, designing and developing Python

applications for data analysis and visualization. He has experience with the scientific

world, having performed various data analysis roles in pharmaceutical chemistry for

private research companies and universities. He has been a computer consultant for

many years at IBM, EDS, and Hewlett-Packard, along with several banks and insurance

companies. He has an organic chemistry master’s degree and a bachelor’s degree in

information technologies and automation systems, with many years of experience in

life sciences (as as Tech Specialist at Beckman Coulter, Tecan, Sciex).

For further info and other examples, visit his page at https://www.meccanismocomplesso.

org and the GitHub page https://github.com/meccanismocomplesso.

https://urldefense.proofpoint.com/v2/url?u=https-3A__www.meccanismocomplesso.org&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=hJGC13mNgD5uxEcdqhgQMQjP_Y7cOw--M0uYh6PSZh4&s=u20jqHbN2A4mzuCObDlx-fxgfAdn91U0cJqnIAF0klY&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.meccanismocomplesso.org&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=hJGC13mNgD5uxEcdqhgQMQjP_Y7cOw--M0uYh6PSZh4&s=u20jqHbN2A4mzuCObDlx-fxgfAdn91U0cJqnIAF0klY&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_meccanismocomplesso&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=hJGC13mNgD5uxEcdqhgQMQjP_Y7cOw--M0uYh6PSZh4&s=rSBZIenmGs3ewBiCK01gO-TsTBHoaOi2if37hx2z8PM&e=

xix

About the Technical Reviewer

Raul Samayoa is a senior software developer and machine

learning specialist with many years of experience in the

financial industry. An MSc graduate from the Georgia

Institute of Technology, he's never met a neural network or

dataset he did not like. He's fond of evangelizing the use of

DevOps tools for data science and software development.

Raul enjoys the energy of his hometown of Toronto,

Canada, where he runs marathons, volunteers as a

technology instructor with the University of Toronto

coders, and likes to work with data in Python and R.

1
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_1

CHAPTER 1

An Introduction to
Data Analysis
In this chapter, you begin to take the first steps in the world of data analysis, learning in

detail about all the concepts and processes that make up this discipline. The concepts

discussed in this chapter are helpful background for the following chapters, where these

concepts and procedures will be applied in the form of Python code, through the use of

several libraries that will be discussed in just as many chapters.

 Data Analysis
In a world increasingly centralized around information technology, huge amounts of

data are produced and stored each day. Often these data come from automatic detection

systems, sensors, and scientific instrumentation, or you produce them daily and

unconsciously every time you make a withdrawal from the bank or make a purchase,

when you record various blogs, or even when you post on social networks.

But what are the data? The data actually are not information, at least in terms of

their form. In the formless stream of bytes, at first glance it is difficult to understand their

essence if not strictly the number, word, or time that they report. Information is actually

the result of processing, which, taking into account a certain dataset, extracts some

conclusions that can be used in various ways. This process of extracting information

from raw data is called data analysis.

The purpose of data analysis is to extract information that is not easily deducible

but that, when understood, leads to the possibility of carrying out studies on the

mechanisms of the systems that have produced them, thus allowing you to forecast

possible responses of these systems and their evolution in time.

2

Starting from a simple methodical approach on data protection, data analysis has

become a real discipline, leading to the development of real methodologies generating

models. The model is in fact the translation into a mathematical form of a system placed

under study. Once there is a mathematical or logical form that can describe system

responses under different levels of precision, you can then make predictions about

its development or response to certain inputs. Thus the aim of data analysis is not the

model, but the quality of its predictive power.

The predictive power of a model depends not only on the quality of the modeling

techniques but also on the ability to choose a good dataset upon which to build the

entire data analysis process. So the search for data, their extraction, and their subsequent

preparation, while representing preliminary activities of an analysis, also belong to data

analysis itself, because of their importance in the success of the results.

So far we have spoken of data, their handling, and their processing through

calculation procedures. In parallel to all stages of processing of data analysis, various

methods of data visualization have been developed. In fact, to understand the data, both

individually and in terms of the role they play in the entire dataset, there is no better

system than to develop the techniques of graphic representation capable of transforming

information, sometimes implicitly hidden, in figures, which help you more easily

understand their meaning. Over the years lots of display modes have been developed for

different modes of data display: the charts.

At the end of the data analysis process, you will have a model and a set of graphical

displays and then you will be able to predict the responses of the system under study;

after that, you will move to the test phase. The model will be tested using another set

of data for which you know the system response. These data are, however, not used to

define the predictive model. Depending on the ability of the model to replicate real

observed responses, you will have an error calculation and knowledge of the validity of

the model and its operating limits.

These results can be compared with any other models to understand if the newly

created one is more efficient than the existing ones. Once you have assessed that, you

can move to the last phase of data analysis—deployment. This consists of implementing

the results produced by the analysis, namely, implementing the decisions to be taken

based on the predictions generated by the model and the associated risks.

Data analysis is well suited to many professional activities. So, knowledge of it

and how it can be put into practice is relevant. It allows you to test hypotheses and to

understand more deeply the systems analyzed.

Chapter 1 an IntroduCtIon to data analysIs

3

 Knowledge Domains of the Data Analyst
Data analysis is basically a discipline suitable to the study of problems that may occur

in several fields of applications. Moreover, data analysis includes many tools and

methodologies that require good knowledge of computing, mathematical, and statistical

concepts.

A good data analyst must be able to move and act in many different disciplinary

areas. Many of these disciplines are the basis of the methods of data analysis, and

proficiency in them is almost necessary. Knowledge of other disciplines is necessary

depending on the area of application and study of the particular data analysis project

you are about to undertake, and, more generally, sufficient experience in these areas can

help you better understand the issues and the type of data needed.

Often, regarding major problems of data analysis, it is necessary to have an

interdisciplinary team of experts who can contribute in the best possible way in their

respective fields of competence. Regarding smaller problems, a good analyst must be able to

recognize problems that arise during data analysis, inquire to determine which disciplines

and skills are necessary to solve these problems, study these disciplines, and maybe even

ask the most knowledgeable people in the sector. In short, the analyst must be able to know

how to search not only for data, but also for information on how to treat that data.

 Computer Science
Knowledge of computer science is a basic requirement for any data analyst. In fact,

only when you have good knowledge of and experience in computer science can you

efficiently manage the necessary tools for data analysis. In fact, every step concerning

data analysis involves using calculation software (such as IDL, MATLAB, etc.) and

programming languages (such as C ++, Java, and Python).

The large amount of data available today, thanks to information technology, requires

specific skills in order to be managed as efficiently as possible. Indeed, data research

and extraction require knowledge of these various formats. The data are structured and

stored in files or database tables with particular formats. XML, JSON, or simply XLS

or CSV files, are now the common formats for storing and collecting data, and many

applications allow you to read and manage the data stored on them. When it comes to

extracting data contained in a database, things are not so immediate, but you need to

know the SQL query language or use software specially developed for the extraction of

data from a given database.

Chapter 1 an IntroduCtIon to data analysIs

4

Moreover, for some specific types of data research, the data are not available in an

explicit format, but are present in text files (documents and log files) or web pages, and

shown as charts, measures, number of visitors, or HTML tables. This requires specific

technical expertise for the parsing and the eventual extraction of these data (called web

scraping).

So, knowledge of information technology is necessary to know how to use the

various tools made available by contemporary computer science, such as applications

and programming languages. These tools, in turn, are needed to perform data analysis

and data visualization.

The purpose of this book is to provide all the necessary knowledge, as far as possible,

regarding the development of methodologies for data analysis. The book uses the Python

programming language and specialized libraries that provide a decisive contribution to

the performance of all the steps constituting data analysis, from data research to data

mining, to publishing the results of the predictive model.

 Mathematics and Statistics
As you will see throughout the book, data analysis requires a lot of complex math

during the treatment and processing of data. You need to be competent in all of this,

at least to understand what you are doing. Some familiarity with the main statistical

concepts is also necessary because all the methods that are applied in the analysis and

interpretation of data are based on these concepts. Just as you can say that computer

science gives you the tools for data analysis, so you can say that the statistics provide the

concepts that form the basis of data analysis.

This discipline provides many tools to the analyst, and a good knowledge of how to

best use them requires years of experience. Among the most commonly used statistical

techniques in data analysis are

• Bayesian methods

• Regression

• Clustering

Having to deal with these cases, you’ll discover how mathematics and statistics are

closely related. Thanks to the special Python libraries covered in this book, you will be

able to manage and handle them.

Chapter 1 an IntroduCtIon to data analysIs

5

 Machine Learning and Artificial Intelligence
One of the most advanced tools that falls in the data analysis camp is machine learning.

In fact, despite the data visualization and techniques such as clustering and regression,

which should help you find information about the dataset, during this phase of research,

you may often prefer to use special procedures that are highly specialized in searching

patterns within the dataset.

Machine learning is a discipline that uses a whole series of procedures and

algorithms that analyze the data in order to recognize patterns, clusters, or trends and

then extracts useful information for data analysis in an automated way.

This discipline is increasingly becoming a fundamental tool of data analysis, and

thus knowledge of it, at least in general, is of fundamental importance to the data

analyst.

 Professional Fields of Application
Another very important point is the domain of competence of the data

(its source—biology, physics, finance, materials testing, statistics on population, etc.).

In fact, although analysts have had specialized preparation in the field of statistics,

they must also be able to document the source of the data, with the aim of perceiving

and better understanding the mechanisms that generated the data. In fact, the data are

not simple strings or numbers; they are the expression, or rather the measure, of any

parameter observed. Thus, better understanding where the data came from can improve

their interpretation. Often, however, this is too costly for data analysts, even ones with

the best intentions, and so it is good practice to find consultants or key figures to whom

you can pose the right questions.

 Understanding the Nature of the Data
The object of study of data analysis is basically the data. The data then will be the

key player in all processes of data analysis. The data constitute the raw material to be

processed, and thanks to their processing and analysis, it is possible to extract a variety

of information in order to increase the level of knowledge of the system under study, that

is, one from which the data came.

Chapter 1 an IntroduCtIon to data analysIs

6

 When the Data Become Information
Data are the events recorded in the world. Anything that can be measured or categorized

can be converted into data. Once collected, these data can be studied and analyzed, both

to understand the nature of the events and very often also to make predictions or at least

to make informed decisions.

 When the Information Becomes Knowledge
You can speak of knowledge when the information is converted into a set of rules that

helps you better understand certain mechanisms and therefore make predictions on the

evolution of some events.

 Types of Data
Data can be divided into two distinct categories:

• Categorical (nominal and ordinal)

• Numerical (discrete and continuous)

Categorical data are values or observations that can be divided into groups or

categories. There are two types of categorical values: nominal and ordinal. A nominal

variable has no intrinsic order that is identified in its category. An ordinal variable

instead has a predetermined order.

Numerical data are values or observations that come from measurements. There are

two types of numerical values: discrete and continuous numbers. Discrete values can be

counted and are distinct and separated from each other. Continuous values, on the other

hand, are values produced by measurements or observations that assume any value

within a defined range.

 The Data Analysis Process
Data analysis can be described as a process consisting of several steps in which the raw

data are transformed and processed in order to produce data visualizations and make

predictions thanks to a mathematical model based on the collected data. Then, data

Chapter 1 an IntroduCtIon to data analysIs

7

analysis is nothing more than a sequence of steps, each of which plays a key role in the

subsequent ones. So, data analysis is schematized as a process chain consisting of the

following sequence of stages:

• Problem definition

• Data extraction

• Data preparation - Data cleaning

• Data preparation - Data transformation

• Data exploration and visualization

• Predictive modeling

• Model validation/test

• Deploy - Visualization and interpretation of results

• Deploy - Deployment of the solution

Figure 1-1 shows a schematic representation of all the processes involved in the

data analysis.

Chapter 1 an IntroduCtIon to data analysIs

8

 Problem Definition
The process of data analysis actually begins long before the collection of raw data. In

fact, data analysis always starts with a problem to be solved, which needs to be defined.

The problem is defined only after you have focused the system you want to study;

this may be a mechanism, an application, or a process in general. Generally this study

can be in order to better understand its operation, but in particular the study will

be designed to understand the principles of its behavior in order to be able to make

predictions or choices (defined as an informed choice).

The definition step and the corresponding documentation (deliverables) of the

scientific problem or business are both very important in order to focus the entire

analysis strictly on getting results. In fact, a comprehensive or exhaustive study of the

Figure 1-1. The data analysis process

Chapter 1 an IntroduCtIon to data analysIs

9

system is sometimes complex and you do not always have enough information to start

with. So the definition of the problem and especially its planning can determine the

guidelines to follow for the whole project.

Once the problem has been defined and documented, you can move to the project

planning stage of data analysis. Planning is needed to understand which professionals

and resources are necessary to meet the requirements to carry out the project as

efficiently as possible. So you’re going to consider the issues in the area involving the

resolution of the problem. You will look for specialists in various areas of interest and

install the software needed to perform data analysis.

Also during the planning phase, you choose an effective team. Generally, these

teams should be cross-disciplinary in order to solve the problem by looking at the data

from different perspectives. So, building a good team is certainly one of the key factors

leading to success in data analysis.

 Data Extraction
Once the problem has been defined, the first step is to obtain the data in order to

perform the analysis. The data must be chosen with the basic purpose of building the

predictive model, and so data selection is crucial for the success of the analysis as well.

The sample data collected must reflect as much as possible the real world, that is, how

the system responds to stimuli from the real world. For example, if you’re using huge

datasets of raw data and they are not collected competently, these may portray false or

unbalanced situations.

Thus, poor choice of data, or even performing analysis on a dataset that’s not

perfectly representative of the system, will lead to models that will move away from the

system under study.

The search and retrieval of data often require a form of intuition that goes beyond

mere technical research and data extraction. This process also requires a careful

understanding of the nature and form of the data, which only good experience and

knowledge in the problem’s application field can provide.

Regardless of the quality and quantity of data needed, another issue is using the best

data sources.

If the studio environment is a laboratory (technical or scientific) and the data

generated are experimental, then in this case the data source is easily identifiable. In this

case, the problems will be only concerning the experimental setup.

Chapter 1 an IntroduCtIon to data analysIs

10

But it is not possible for data analysis to reproduce systems in which data are

gathered in a strictly experimental way in every field of application. Many fields require

searching for data from the surrounding world, often relying on external experimental

data, or even more often collecting them through interviews or surveys. So in these

cases, finding a good data source that is able to provide all the information you need

for data analysis can be quite challenging. Often it is necessary to retrieve data from

multiple data sources to supplement any shortcomings, to identify any discrepancies,

and to make the dataset as general as possible.

When you want to get the data, a good place to start is the Web. But most of the

data on the Web can be difficult to capture; in fact, not all data are available in a file or

database, but might be content that is inside HTML pages in many different formats. To

this end, a methodology called web scraping allows the collection of data through the

recognition of specific occurrence of HTML tags within web pages. There is software

specifically designed for this purpose, and once an occurrence is found, it extracts the

desired data. Once the search is complete, you will get a list of data ready to be subjected

to data analysis.

 Data Preparation
Among all the steps involved in data analysis, data preparation, although seemingly

less problematic, in fact requires more resources and more time to be completed. Data

are often collected from different data sources, each of which will have data in it with a

different representation and format. So, all of these data will have to be prepared for the

process of data analysis.

The preparation of the data is concerned with obtaining, cleaning, normalizing, and

transforming data into an optimized dataset, that is, in a prepared format that’s normally

tabular and is suitable for the methods of analysis that have been scheduled during the

design phase.

Many potential problems can arise, including invalid, ambiguous, or missing values,

replicated fields, and out-of-range data.

 Data Exploration/Visualization
Exploring the data involves essentially searching the data in a graphical or statistical

presentation in order to find patterns, connections, and relationships. Data visualization

is the best tool to highlight possible patterns.

Chapter 1 an IntroduCtIon to data analysIs

11

In recent years, data visualization has been developed to such an extent that it has

become a real discipline in itself. In fact, numerous technologies are utilized exclusively

to display data, and many display types are applied to extract the best possible

information from a dataset.

Data exploration consists of a preliminary examination of the data, which is

important for understanding the type of information that has been collected and what

it means. In combination with the information acquired during the definition problem,

this categorization will determine which method of data analysis will be most suitable

for arriving at a model definition.

Generally, this phase, in addition to a detailed study of charts through the

visualization data, may consist of one or more of the following activities:

• Summarizing data

• Grouping data

• Exploring the relationship between the various attributes

• Identifying patterns and trends

• Constructing regression models

• Constructing classification models

Generally, data analysis requires summarizing statements regarding the data to be

studied. Summarization is a process by which data are reduced to interpretation without

sacrificing important information.

Clustering is a method of data analysis that is used to find groups united by common

attributes (also called grouping).

Another important step of the analysis focuses on the identification of relationships,

trends, and anomalies in the data. In order to find this kind of information, you often

have to resort to the tools as well as perform another round of data analysis, this time on

the data visualization itself.

Other methods of data mining, such as decision trees and association rules,

automatically extract important facts or rules from the data. These approaches can be

used in parallel with data visualization to uncover relationships between the data.

Chapter 1 an IntroduCtIon to data analysIs

12

 Predictive Modeling
Predictive modeling is a process used in data analysis to create or choose a suitable

statistical model to predict the probability of a result.

After exploring the data, you have all the information needed to develop the

mathematical model that encodes the relationship between the data. These models are

useful for understanding the system under study, and in a specific way they are used for

two main purposes. The first is to make predictions about the data values produced by

the system; in this case, you will be dealing with regression models. The second purpose

is to classify new data products, and in this case, you will be using classification models

or clustering models. In fact, it is possible to divide the models according to the type of

result they produce:

• Classification models: If the result obtained by the model type is

categorical.

• Regression models: If the result obtained by the model type is

numeric.

• Clustering models: If the result obtained by the model type is

descriptive.

Simple methods to generate these models include techniques such as linear

regression, logistic regression, classification and regression trees, and k-nearest

neighbors. But the methods of analysis are numerous, and each has specific

characteristics that make it excellent for some types of data and analysis. Each of these

methods will produce a specific model, and then their choice is relevant to the nature of

the product model.

Some of these models will provide values corresponding to the real system and

according to their structure. They will explain some characteristics of the system under

study in a simple and clear way. Other models will continue to give good predictions,

but their structure will be no more than a “black box” with limited ability to explain

characteristics of the system.

Chapter 1 an IntroduCtIon to data analysIs

13

 Model Validation
Validation of the model, that is, the test phase, is an important phase that allows you to

validate the model built on the basis of starting data. That is important because it allows

you to assess the validity of the data produced by the model by comparing them directly

with the actual system. But this time, you are coming out from the set of starting data on

which the entire analysis has been established.

Generally, you will refer to the data as the training set when you are using them for

building the model, and as the validation set when you are using them for validating the

model.

Thus, by comparing the data produced by the model with those produced by the

system, you will be able to evaluate the error, and using different test datasets, you can

estimate the limits of validity of the generated model. In fact the correctly predicted

values could be valid only within a certain range, or have different levels of matching

depending on the range of values taken into account.

This process allows you not only to numerically evaluate the effectiveness of

the model but also to compare it with any other existing models. There are several

techniques in this regard; the most famous is the cross-validation. This technique is

based on the division of the training set into different parts. Each of these parts, in

turn, will be used as the validation set and any other as the training set. In this iterative

manner, you will have an increasingly perfected model.

 Deployment
This is the final step of the analysis process, which aims to present the results, that is, the

conclusions of the analysis. In the deployment process of the business environment, the

analysis is translated into a benefit for the client who has commissioned it. In technical

or scientific environments, it is translated into design solutions or scientific publications.

That is, the deployment basically consists of putting into practice the results obtained

from the data analysis.

There are several ways to deploy the results of data analysis or data mining.

Normally, a data analyst’s deployment consists in writing a report for management or

for the customer who requested the analysis. This document will conceptually describe

the results obtained from the analysis of data. The report should be directed to the

managers, who are then able to make decisions. Then, they will put into practice the

conclusions of the analysis.

Chapter 1 an IntroduCtIon to data analysIs

14

In the documentation supplied by the analyst, each of these four topics will be

discussed in detail:

• Analysis results

• Decision deployment

• Risk analysis

• Measuring the business impact

When the results of the project include the generation of predictive models, these

models can be deployed as stand-alone applications or can be integrated into other

software.

 Quantitative and Qualitative Data Analysis
Data analysis is completely focused on data. Depending on the nature of the data, it is

possible to make some distinctions.

When the analyzed data have a strictly numerical or categorical structure, then

you are talking about quantitative analysis, but when you are dealing with values that

are expressed through descriptions in natural language, then you are talking about

qualitative analysis.

Precisely because of the different nature of the data processed by the two types of

analyses, you can observe some differences between them.

Quantitative analysis has to do with data with a logical order or that can be

categorized in some way. This leads to the formation of structures within the data.

The order, categorization, and structures in turn provide more information and allow

further processing of the data in a more mathematical way. This leads to the generation

of models that provide quantitative predictions, thus allowing the data analyst to draw

more objective conclusions.

Qualitative analysis instead has to do with data that generally do not have a structure,

at least not one that is evident, and their nature is neither numeric nor categorical. For

example, data under qualitative study could include written textual, visual, or audio

data. This type of analysis must therefore be based on methodologies, often ad hoc, to

extract information that will generally lead to models capable of providing qualitative

predictions, with the result that the conclusions to which the data analyst can arrive

may also include subjective interpretations. On the other hand, qualitative analysis

Chapter 1 an IntroduCtIon to data analysIs

15

can explore more complex systems and draw conclusions that are not possible using a

strictly mathematical approach. Often this type of analysis involves the study of systems

such as social phenomena or complex structures that are not easily measurable.

Figure 1-2 shows the differences between the two types of analysis.

 Open Data
In support of the growing demand for data, a huge number of data sources are now

available on the Internet. These data sources freely provide information to anyone in

need, and they are called open data.

Here is a list of some open data available online. You can find a more complete list

and details of the open data available online in Appendix B.

• DataHub (http://datahub.io/dataset)

• World Health Organization (http://www.who.int/research/en/)

• Data.gov (http://data.gov)

• European Union Open Data Portal (http://open-data.europa.eu/

en/data/)

• Amazon Web Service public datasets (http://aws.amazon.com/

datasets)

• Facebook Graph (http://developers.facebook.com/docs/graph- api)

Figure 1-2. Quantitative and qualitative analyses

Chapter 1 an IntroduCtIon to data analysIs

http://datahub.io/dataset
http://www.who.int/research/en/
http://data.gov
http://open-data.europa.eu/en/data/
http://open-data.europa.eu/en/data/
http://aws.amazon.com/datasets
http://aws.amazon.com/datasets
http://developers.facebook.com/docs/graph-api

16

• Healthdata.gov (http://www.healthdata.gov)

• Google Trends (http://www.google.com/trends/explore)

• Google Finance (https://www.google.com/finance)

• Google Books Ngrams (http://storage.googleapis.com/books/

ngrams/books/datasetsv2.html)

• Machine Learning Repository (http://archive.ics.uci.edu/ml/)

As an idea of open data sources available online, you can look at the LOD cloud

diagram (http://lod-cloud.net), which displays the connections of the data link

among several open data sources currently available on the network (see Figure 1-3).

Figure 1-3. Linking open data cloud diagram 2014, by Max Schmachtenberg,
Christian Bizer, Anja Jentzsch, and Richard Cyganiak. http://lod-cloud.net/
[CC-BY-SA license]

Chapter 1 an IntroduCtIon to data analysIs

http://www.healthdata.gov
http://www.google.com/trends/explore
https://www.google.com/finance
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://archive.ics.uci.edu/ml/
http://lod-cloud.net
http://lod-cloud.net/

17

 Python and Data Analysis
The main argument of this book is to develop all the concepts of data analysis by treating

them in terms of Python. The Python programming language is widely used in scientific

circles because of its large number of libraries that provide a complete set of tools for

analysis and data manipulation.

Compared to other programming languages generally used for data analysis, such

as R and MATLAB, Python not only provides a platform for processing data, but also has

features that make it unique compared to other languages and specialized applications.

The development of an ever-increasing number of support libraries, the implementation

of algorithms of more innovative methodologies, and the ability to interface with other

programming languages (C and Fortran) all make Python unique among its kind.

Furthermore, Python is not only specialized for data analysis, but also has many

other applications, such as generic programming, scripting, interfacing to databases,

and more recently web development, thanks to web frameworks like Django. So it is

possible to develop data analysis projects that are compatible with the web server with

the possibility to integrate it on the Web.

So, for those who want to perform data analysis, Python, with all its packages, is

considered the best choice for the foreseeable future.

 Conclusions
In this chapter, you learned what data analysis is and, more specifically, the various

processes that comprise it. Also, you have begun to see the role that data play in building

a prediction model and how their careful selection is at the basis of a careful and

accurate data analysis.

In the next chapter, you will take this vision of Python and the tools it provides to

perform data analysis.

Chapter 1 an IntroduCtIon to data analysIs

19
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_2

CHAPTER 2

Introduction to
the Python World
The Python language, and the world around it, is made by interpreters, tools, editors,

libraries, notebooks, etc. This Python world has expanded greatly in recent years, enriching

and taking forms that developers who approach it for the first time can sometimes find

complicated and somewhat misleading. Thus if you are approaching Python for the first

time, you might feel lost among so many choices, especially on where to start.

This chapter gives you an overview of the entire Python world. First you will read a

description of the Python language and its unique characteristics. You’ll see where to

start, what an interpreter is, and how to begin writing the first lines of code in Python.

Then you are presented with some new, more advanced, forms of interactive writing

with respect to the shells, such as IPython and IPython Notebook.

 Python—The Programming Language
The Python programming language was created by Guido Von Rossum in 1991 and

started with a previous language called ABC. This language can be characterized by a

series of adjectives:

• Interpreted

• Portable

• Object-oriented

• Interactive

• Interfaced

• Open source

• Easy to understand and use

20

Python is an interpreted programming language, that is, it’s pseudo-compiled. Once

you write the code, you need an interpreter to run it. The interpreter is a program that is

installed on each machine that has the task of interpreting the source code and running

it. Unlike with languages such as C, C++, and Java, there is no compile time with Python.

Python is a highly portable programming language. The decision to use an

interpreter as an interface for reading and running code has a key advantage: portability.

In fact, you can install an interpreter on any platform (Linux, Windows, and Mac)

and the Python code will not change. Because of this, Python is often used as the

programming language for many small-form devices, such as the Raspberry Pi and other

microcontrollers.

Python is an object-oriented programming language. In fact, it allows you to specify

classes of objects and implement their inheritance. But unlike C++ and Java, there are no

constructors or destructors. Python also allows you to implement specific constructs in

your code to manage exceptions. However, the structure of the language is so

flexible that it allows you to program with alternative approaches with respect to the

object- oriented one. For example, you can use functional or vectorial approaches.

Python is an interactive programming language. Thanks to the fact that Python uses

an interpreter to be executed, this language can take on very different aspects depending

on the context in which it is used. In fact, you can write code made of a lot of lines,

similar to what you might do in languages like C++ or Java, and then launch the program,

or you can enter the command line at once and execute it, immediately getting the

results of the command. Then, depending on the results, you can decide what command

to run next. This highly interactive way to execute code makes the Python computing

environment similar to MATLAB. This feature of Python is one reason it’s popular with

the scientific community.

Python is a programming language that can be interfaced. In fact, this programming

language can be interfaced with code written in other programming languages such

as C/C++ and FORTRAN. Even this was a winning choice. In fact, thanks to this aspect,

Python can compensate for what is perhaps its only weak point, the speed of execution.

The nature of Python, as a highly dynamic programming language, can sometimes lead

to execution of programs up to 100 times slower than the corresponding static programs

compiled with other languages. Thus the solution to this kind of performance problem is

to interface Python to the compiled code of other languages by using it as if it were

its own.

Chapter 2 IntroduCtIon to the python World

21

Python is an open-source programming language. CPython, which is the

reference implementation of the Python language, is completely free and open

source. Additionally every module or library in the network is open source and their

code is available online. Every month, an extensive developer community includes

improvements to make this language and all its libraries even richer and more efficient.

CPython is managed by the nonprofit Python Software Foundation, which was created

in 2001 and has given itself the task of promoting, protecting, and advancing the Python

programming language.

Finally, Python is a simple language to use and learn. This aspect is perhaps the most

important, because it is the most direct aspect that a developer, even a novice, faces.

The high intuitiveness and ease of reading of Python code often leads to “sympathy”

for this programming language, and consequently it is the choice of most newcomers

to programming. However, its simplicity does not mean narrowness, since Python is a

language that is spreading in every field of computing. Furthermore, Python is doing all

of this so simply, in comparison to existing programming languages such as C++, Java,

and FORTRAN, which by their nature are very complex.

 Python—The Interpreter
As described in the previous sections, each time you run the python command, the

Python interpreter starts, characterized by a >>> prompt.

The Python interpreter is simply a program that reads and interprets the commands

passed to the prompt. You have seen that the interpreter can accept either a single

command at a time or entire files of Python code. However the approach by which it

performs this is always the same.

Each time you press the Enter key, the interpreter begins to scan the code (either

a row or a full file of code) token by token (called tokenization). These tokens are

fragments of text that the interpreter arranges in a tree structure. The tree obtained is the

logical structure of the program, which is then converted to bytecode (.pyc or .pyo). The

process chain ends with the bytecode that will be executed by a Python virtual machine

(PVM). See Figure 2-1.

Chapter 2 IntroduCtIon to the python World

22

You can find very good documentation on this process at https://www.ics.uci.

edu/~pattis/ICS-31/lectures/tokens.pdf.

The standard Python interpreter is reported as Cython, since it was written in C.

There are other areas that have been developed using other programming languages,

such as Jython, developed in Java; IronPython, developed in C# (only for Windows); and

PyPy, developed entirely in Python.

 Cython

The Cython project is based on creating a compiler that translates Python code into

C. This code is then executed within a Cython environment at runtime. This type of

compilation system has made it possible to introduce C semantics into the Python

code to make it even more efficient. This system has led to the merging of two worlds

of programming language with the birth of Cython, which can be considered a new

programming language. You can find a lot of documentation about it online; I advise you

to visit http://docs.cython.org.

 Jython

In parallel to Cython, there is a version totally built and compiled in Java, named Jython. It

was created by Jim Hugunin in 1997 (http://www.jython.org). Jython is an implementation

of the Python programming language in Java; it is further characterized by using Java classes

instead of Python modules to implement extensions and packages of Python.

 PyPy

The PyPy interpreter is a JIT (just-in-time) compiler, and it converts the Python code

directly in machine code at runtime. This choice was made to speed up the execution of

Python. However, this choice has led to the use of a smaller subset of Python commands,

defined as RPython. For more information on this, consult the official website at

 http://pypy.org.

Figure 2-1. The steps performed by the Python interpreter

Chapter 2 IntroduCtIon to the python World

https://www.ics.uci.edu/~pattis/ICS-31/lectures/tokens.pdf
https://www.ics.uci.edu/~pattis/ICS-31/lectures/tokens.pdf
http://docs.cython.org
http://www.jython.org
http://pypy.org

23

 Python 2 and Python 3
The Python community is still in transition from interpreters of the Series 2 to Series 3.

In fact, you will currently find two releases of Python that are used in parallel (version 2.7

and version 3.6). This kind of ambiguity can create confusion, especially in terms of

choosing which version to use and the differences between these two versions. One

question that you surely must be asking is why version 2.x is still being released if it is

distributed around a much more enhanced version such as 3.x.

When Guido Van Rossum (the creator of Python) decided to bring significant

changes to the Python language, he soon found that these changes would make the new

version incompatible with a lot of existing code. Thus he decided to start with a new

version of Python called Python 3.0. To overcome the problem of incompatibility and

avoid creating huge amounts of unusable code, it was decided to maintain a compatible

version, 2.7 to be precise.

Python 3.0 made its first appearance in 2008, while version 2.7 was released in 2010

with a promise that it would not be followed by big releases, and at the moment the

current version is 3.6.5 (2018).

In the book we refer to the Python 3.x version; however, with a few exceptions, there

should be no problem with the Python 2.7.x version (the last version is 2.7.14 and was

released in September 2017).

 Installing Python
In order to develop programs in Python you have to install it on your operating system.

Linux distributions and MacOS X machines should already have a preinstalled version

of Python. If not, or if you would like to replace that version with another, you can easily

install it. The installation of Python differs from operating system to operating system;

however, it is a rather simple operation.

On Debian-Ubuntu Linux systems, run this command

apt-get install python

On Red Hat Fedora Linux systems working with rpm packages, run this command

yum install python

Chapter 2 IntroduCtIon to the python World

24

If you are running Windows or MacOS X, you can go to the official Python site

(http://www.python.org) and download the version you prefer. The packages in this

case are installed automatically.

However, today there are distributions that provide a number of tools that make the

management and installation of Python, all libraries, and associated applications easier.

I strongly recommend you choose one of the distributions available online.

 Python Distributions
Due to the success of the Python programming language, many Python tools have been

developed to meet various functionalities over the years. There are so many that it’s

virtually impossible to manage all of them manually.

In this regard, many Python distributions efficiently manage hundreds of Python

packages. In fact, instead of individually downloading the interpreter, which includes

only the standard libraries, and then needing to individually install all the additional

libraries, it is much easier to install a Python distribution.

At the heart of these distributions are the package managers, which are nothing more

than applications that automatically manage, install, upgrade, configure, and remove

Python packages that are part of the distribution.

Their functionality is very useful, since the user simply makes a request on a

particular package (which could be an installation for example), and the package

manager, usually via the Internet, performs the operation by analyzing the necessary

version, alongside all dependencies with any other packages, and downloading them if

they not present.

 Anaconda

Anaconda is a free distribution of Python packages distributed by Continuum Analytics

(https://www.anaconda.com). This distribution supports Linux, Windows, and MacOS

X operating systems. Anaconda, in addition to providing the latest packages released

in the Python world, comes bundled with most of the tools you need to set up a Python

development environment.

Indeed, when you install the Anaconda distribution on your system, you can use

many tools and applications described in this chapter, without worrying about having to

install and manage each separately. The basic distribution includes Spyder as the IDE,

IPython QtConsole, and Notebook.

Chapter 2 IntroduCtIon to the python World

http://www.python.org
https://www.anaconda.com

25

The management of the entire Anaconda distribution is performed by an application

called conda. This is the package manager and the environment manager of the

Anaconda distribution and it handles all of the packages and their versions.

conda install <package name>

One of the most interesting aspects of this distribution is the ability to manage

multiple development environments, each with its own version of Python. Indeed,

when you install Anaconda, the Python version 2.7 is installed by default. All installed

packages then will refer to that version. This is not a problem, because Anaconda offers

the possibility to work simultaneously and independently with other Python versions

by creating a new environment. You can create, for instance, an environment based on

Python 3.6.

conda create -n py36 python=3.6 anaconda

This will generate a new Anaconda environment with all the packages related to the

Python 3.6 version. This installation will not affect in any way the environment built with

Python 2.7. Once it’s installed, you can activate the new environment by entering the

following command.

source activate py36

On Windows, use this instead:

activate py36

C:\Users\Fabio>activate py36

 (py36) C:\Users\Fabio>

You can create as many versions of Python as you want; you need only to change the

parameter passed with the python option in the conda create command. When you want

to return to work with the original Python version, you have to use the following command:

source deactivate

On Windows, use this:

(py36) C:\Users\Fabio>deactivate

Deactivating environment "py36"...

C:\Users\Fabio>

Chapter 2 IntroduCtIon to the python World

26

 Enthought Canopy

There is another distribution very similar to Anaconda and it is the Canopy distribution

provided by Enthought, a company founded in 2001 and known for the SciPy project

(https://www.enthought.com/products/canopy/). This distribution supports Linux,

Windows, and MacOS X systems and it consists of a large amount of packages, tools,

and applications managed by a package manager. The package manager of Canopy, as

opposed to conda, is graphical.

Unfortunately, only the basic version of this distribution, called Canopy Express, is

free; in addition to the package normally distributed, it also includes IPython and an IDE

of Canopy that has a special feature that is not present in other IDEs. It has embedded the

IPython in order to use this environment as a window for testing and debugging code.

 Python(x,y)

Python(x,y) is a free distribution that works only on Windows and is downloadable from

http://code.google.com/p/pythonxy/. This distribution uses Spyder as the IDE.

 Using Python
Python is rich but simple and very flexible. It allows expansion of your development

activities in many areas of work (data analysis, scientific, graphic interfaces, etc.).

Precisely for this reason, Python can be used in many different contexts, often according

to the taste and ability of the developer. This section presents the various approaches

to using Python in the course of the book. According to the various topics discussed in

different chapters, these different approaches will be used specifically, as they will be

more suited to the task at hand.

 Python Shell

The easiest way to approach the Python world is to open a session in the Python shell,

which is a terminal running a command line. In fact, you can enter one command at

a time and test its operation immediately. This mode makes clear the nature of the

interpreter that underlies Python. In fact, the interpreter can read one command at a

time, keeping the status of the variables specified in the previous lines, a behavior similar

to that of MATLAB and other calculation software.

Chapter 2 IntroduCtIon to the python World

https://www.enthought.com/products/canopy/
http://code.google.com/p/pythonxy/

27

This approach is helpful when approaching Python the first time. You can test

commands one at a time without having to write, edit, and run an entire program, which

could be composed of many lines of code.

This mode is also good for testing and debugging Python code one line at a time, or

simply to make calculations. To start a session on the terminal, simply type this on the

command line:

>>> python

Python 3.6.3 (default, Oct 15 2017, 03:27:45) [MSC v.1900 64 bit (AMD64)]

on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

Now the Python shell is active and the interpreter is ready to receive commands in

Python. Start by entering the simplest of commands, but a classic for getting started with

programming.

>>> print("Hello World!")

Hello World!

 Run an Entire Program

The best way to become familiar with Python is to write an entire program and then run

it from the terminal. First write a program using a simple text editor. For example, you

can use the code shown in Listing 2-1 and save it as MyFirstProgram.py.

Listing 2-1. MyFirstProgram.py

myname = input("What is your name? ")

print("Hi " + myname + ", I'm glad to say: Hello world!")

Now you’ve written your first program in Python, and you can run it directly from the

command line by calling the python command and then the name of the file containing

the program code.

python MyFirstProgram.py

What is your name? Fabio Nelli

Hi Fabio Nelli, I'm glad to say: Hello world!

Chapter 2 IntroduCtIon to the python World

28

 Implement the Code Using an IDE

A more comprehensive approach than the previous ones is the use of an IDE (an

Integrated Development Environment). These editors provide a work environment on

which to develop your Python code. They are rich in tools that make developers’ lives

easier, especially when debugging. In the following sections, you will see in detail what

IDEs are currently available.

 Interact with Python

The last approach, and in my opinion, perhaps the most innovative, is the interactive

one. In fact, in addition to the three previous approaches, this approach provides you the

opportunity to interact directly with the Python code.

In this regard, the Python world has been greatly enriched with the introduction

of IPython. IPython is a very powerful tool, designed specifically to meet the needs

of interacting between the Python interpreter and the developer, which under this

approach takes the role of analyst, engineer, or researcher. IPython and its features are

explained in more detail in a later section.

 Writing Python Code
In the previous section you saw how to write a simple program in which the string

"Hello World" was printed. Now in this section you will get a brief overview of the

basics of the Python language.

This section is not intended to teach you to program in Python, or to illustrate syntax

rules of the programming language, but just to give you a quick overview of some basic

principles of Python necessary to continue with the topics covered in this book.

If you already know the Python language, you can safely skip this introductory

section. Instead if you are not familiar with programming and you find it difficult

to understand the topics, I highly recommend that you visit online documentation,

tutorials, and courses of various kinds.

Chapter 2 IntroduCtIon to the python World

29

 Make Calculations

You have already seen that the print() function is useful for printing almost anything.

Python, in addition to being a printing tool, is also a great calculator. Start a session on

the Python shell and begin to perform these mathematical operations:

>>> 1 + 2

3

>>> (1.045 * 3)/4

0.78375

>>> 4 ** 2

16

>>> ((4 + 5j) * (2 + 3j))

(-7+22j)

>>> 4 < (2*3)

True

Python can calculate many types of data including complex numbers and conditions

with Boolean values. As you can see from these calculations, the Python interpreter

directly returns the result of the calculations without the need to use the print()

function. The same thing applies to values contained in variables. It’s enough to call the

variable to see its contents.

>>> a = 12 * 3.4

>>> a

40.8

 Import New Libraries and Functions

You saw that Python is characterized by the ability to extend its functionality by importing

numerous packages and modules. To import a module in its entirety, you have to use the

import command.

>>> import math

Chapter 2 IntroduCtIon to the python World

30

In this way all the functions contained in the math package are available in your

Python session so you can call them directly. Thus you have extended the standard set of

functions available when you start a Python session. These functions are called with the

following expression.

library_name.function_name()

For example, you can now calculate the sine of the value contained in the variable a.

>>> math.sin(a)

As you can see, the function is called along with the name of the library. Sometimes

you might find the following expression for declaring an import.

>>> from math import *

Even if this works properly, it is to be avoided for good practice. In fact, writing an

import in this way involves the importation of all functions without necessarily defining

the library to which they belong.

>>> sin(a)

0.040693257349864856

This form of import can lead to very large errors, especially if the imported libraries

are numerous. In fact, it is not unlikely that different libraries have functions with the

same name, and importing all of these would result in an override of all functions with

the same name previously imported. Therefore the behavior of the program could

generate numerous errors or worse, abnormal behavior.

Actually, this way to import is generally used for only a limited number of functions,

that is, functions that are strictly necessary for the functioning of the program, thus

avoiding the importation of an entire library when it is completely unnecessary.

 >>> from math import sin

 Data Structure

You saw in the previous examples how to use simple variables containing a single value.

Python provides a number of extremely useful data structures. These data structures are

able to contain lots of data simultaneously and sometimes even data of different types.

Chapter 2 IntroduCtIon to the python World

31

The various data structures provided are defined differently depending on how their

data are structured internally.

• List

• Set

• Strings

• Tuples

• Dictionary

• Deque

• Heap

This is only a small part of all the data structures that can be made with Python.

Among all these data structures, the most commonly used are dictionaries and lists.

The type dictionary, defined also as dicts, is a data structure in which each particular

value is associated with a particular label, called a key. The data collected in a dictionary

have no internal order but are only definitions of key/value pairs.

>>> dict = {'name':'William', 'age':25, 'city':'London'}

If you want to access a specific value within the dictionary, you have to indicate the

name of the associated key.

>>> dict["name"]

'William'

If you want to iterate the pairs of values in a dictionary, you have to use the for-in

construct. This is possible through the use of the items() function.

>>> for key, value in dict.items():

... print(key,value)

...

name William

age 25

city London

Chapter 2 IntroduCtIon to the python World

32

The type list is a data structure that contains a number of objects in a precise order

to form a sequence to which elements can be added and removed. Each item is marked

with a number corresponding to the order of the sequence, called the index.

>>> list = [1,2,3,4]

>>> list

[1, 2, 3, 4]

If you want to access the individual elements, it is sufficient to specify the index in

square brackets (the first item in the list has 0 as its index), while if you take out a portion

of the list (or a sequence), it is sufficient to specify the range with the indices i and j

corresponding to the extremes of the portion.

>>> list[2]

3

>>> list[1:3]

[2, 3]

If you are using negative indices instead, this means you are considering the last item

in the list and gradually moving to the first.

>>> list[-1]

4

In order to do a scan of the elements of a list, you can use the for-in construct.

>>> items = [1,2,3,4,5]

>>> for item in items:

... print(item + 1)

...

2

3

4

5

6

Chapter 2 IntroduCtIon to the python World

33

 Functional Programming

The for-in loop shown in the previous example is very similar to loops found in other

programming languages. But actually, if you want to be a “Python” developer, you

have to avoid using explicit loops. Python offers alternative approaches, specifying

programming techniques such as functional programming (expression-oriented

programming).

The tools that Python provides to develop functional programming comprise a series

of functions:

• map(function, list)

• filter(function, list)

• reduce(function, list)

• lambda

• list comprehension

The for loop that you have just seen has a specific purpose, which is to apply an

operation on each item and then somehow gather the result. This can be done by the

map() function.

>>> items = [1,2,3,4,5]

>>> def inc(x): return x+1

...

>>> list(map(inc,items))

[2, 3, 4, 5, 6]

In the previous example, it first defines the function that performs the operation on

every single element, and then it passes it as the first argument to map(). Python allows

you to define the function directly within the first argument using lambda as a function.

This greatly reduces the code and compacts the previous construct into a single line of

code.

>>> list(map((lambda x: x+1),items))

[2, 3, 4, 5, 6]

Chapter 2 IntroduCtIon to the python World

34

Two other functions working in a similar way are filter() and reduce(). The

filter() function extracts the elements of the list for which the function returns True.

The reduce() function instead considers all the elements of the list to produce a single

result. To use reduce(), you must import the module functools.

>>> list(filter((lambda x: x < 4), items))

[1, 2, 3]

>>> from functools import reduce

>>> reduce((lambda x,y: x/y), items)

0.008333333333333333

Both of these functions implement other types by using the for loop. They replace

these cycles and their functionality, which can be alternatively expressed with simple

functions. That is what constitutes functional programming.

The final concept of functional programming is list comprehension. This concept is

used to build lists in a very natural and simple way, referring to them in a manner similar

to how mathematicians describe datasets. The values in the sequence are defined

through a particular function or operation.

>>> S = [x**2 for x in range(5)]

>>> S

[0, 1, 4, 9, 16]

 Indentation

A peculiarity for those coming from other programming languages is the role that

indentation plays. Whereas you used to manage the indentation for purely aesthetic

reasons, making the code somewhat more readable, in Python indentation assumes an

integral role in the implementation of the code, by dividing it into logical blocks. In fact,

while in Java, C, and C++, each line of code is separated from the next by a semicolon (;),

in Python you should not specify any symbol that separates them, included the braces to

indicate a logical block.

These roles in Python are handled through indentation; that is, depending on the

starting point of the code line, the interpreter determines whether it belongs to a logical

block or not.

Chapter 2 IntroduCtIon to the python World

35

>>> a = 4

>>> if a > 3:

... if a < 5:

... print("I'm four")

... else:

... print("I'm a little number")

...

I'm four

>>> if a > 3:

... if a < 5:

... print("I'm four")

... else:

... print("I'm a big number")

...

I'm four

In this example you can see that depending on how the else command is

indented, the conditions assume two different meanings (specified by me in the strings

themselves).

 IPython
IPython is a further development of Python that includes a number of tools:

• The IPython shell, which is a powerful interactive shell resulting in a

greatly enhanced Python terminal.

• A QtConsole, which is a hybrid between a shell and a GUI, allowing

you to display graphics inside the console instead of in separate

windows.

• The IPython Notebook, which is a web interface that allows you

to mix text, executable code, graphics, and formulas in a single

representation.

Chapter 2 IntroduCtIon to the python World

36

 IPython Shell

This shell apparently resembles a Python session run from a command line, but actually,

it provides many other features that make this shell much more powerful and versatile

than the classic one. To launch this shell, just type ipython on the command line.

> ipython

Python 3.6.3 (default, Oct 15 2017, 3:27:45) [MSC v.1900 64bit (AMD64)]

Type "copyright", "credits", or "license" for more information.

IPython 6.1.0 -- An enhanced Interactive Python. Type '?' for help

In [1]:

As you can see, a particular prompt appears with the value In [1]. This means that it

is the first line of input. Indeed, IPython offers a system of numbered prompts (indexed)

with input and output caching.

In [1]: print("Hello World!")

Hello World!

In [2]: 3/2

Out[2]: 1.5

In [3]: 5.0/2

Out[3]: 2.5

In [4]:

The same thing applies to values in output that are indicated with the values Out[1],

Out [2], and so on. IPython saves all inputs that you enter by storing them as variables.

In fact, all the inputs entered were included as fields in a list called In.

In [4]: In

Out[4]: [", 'print "Hello World!"', '3/2', '5.0/2', 'In']

The indices of the list elements are the values that appear in each prompt. Thus, to

access a single line of input, you can simply specify that value.

In [5]: In[3]

Out[5]: '5.0/2'

Chapter 2 IntroduCtIon to the python World

37

For output, you can apply the same concept.

In [6]: Out

Out[6]:

{2: 1,

 3: 2.5,

 4: ['',

 u'print "Hello World!"',

 u'3/2',

 u'5.0/2',

 u'_i2',

 u'In',

 u'In[3]',

 u'Out'],

 5: u'5.0/2'}

 The Jupyter Project

IPython is a project that has grown enormously in recent times, and with the

release of IPython 3.0, everything is moving toward a new project called Jupyter

(https://jupyter.org)—see Figure 2-2.

Figure 2-2. The Jupyter project logo

Chapter 2 IntroduCtIon to the python World

https://jupyter.org

38

IPython will continue to exist as a Python shell and as a kernel of Jupyter, but the

Notebook and the other language-agnostic components belonging to the IPython

project will move to form the new Jupyter project.

 Jupyter QtConsole

In order to launch this application from the command line, you must enter the following

command:

ipython qtconsole

or

jupyter qtconsole

The application consists of a GUI that has all the functionality present in the IPython

shell. See Figure 2-3.

Figure 2-3. The IPython QtConsole

Chapter 2 IntroduCtIon to the python World

39

Figure 2-4. The web page showing the Jupyter Notebook

 Jupyter Notebook

Jupyter Notebook is the latest evolution of this interactive environment (see Figure 2-4).

In fact, with Jupyter Notebook, you can merge executable code, text, formulas, images,

and animations into a single Web document. This is useful for many purposes such as

presentations, tutorials, debug, and so forth.

 PyPI—The Python Package Index
The Python Package Index (PyPI) is a software repository that contains all the software

needed for programming in Python, for example, all Python packages belonging to

other Python libraries. The content repository is managed directly by the developers of

individual packages that deal with updating the repository with the latest versions of

their released libraries. For a list of the packages contained in the repository, go to the

official page of PyPI at https://pypi.python.org/pypi.

As far as the administration of these packages, you can use the pip application,

which is the package manager of PyPI.

By launching it from the command line, you can manage all the packages and

individually decide if a package should be installed, upgraded, or removed. Pip

will check if the package is already installed, or if it needs to be updated, to control

dependencies, and to assess whether other packages are necessary. Furthermore, it

manages the downloading and installation processes.

Chapter 2 IntroduCtIon to the python World

https://pypi.python.org/pypi

40

$ pip install <<package_name>>

$ pip search <<package_name>>

$ pip show <<package_name>>

$ pip unistall <<package_name>>

Regarding the installation, if you have Python 3.4+ (released March 2014) and

Python 2.7.9+ (released December 2014) already installed on your system, the pip

software is already included in these releases of Python. However, if you are still using an

older version of Python, you need to install pip on your system. The installation of pip on

your system depends on the operating system on which you are working.

On Linux Debian-Ubuntu, use this command:

$ sudo apt-get install python-pip

On Linux Fedora, use this command:

$ sudo yum install python-pip

On Windows, visit https://pip.pypa.io/en/latest/installing/ and download

get-pip.py onto your PC. Once the file is downloaded, run this command:

python get-pip.py

This way, you will install the package manager. Remember to add C:\Python3.X\

Scripts to the PATH environment variable.

 The IDEs for Python
Although most of the Python developers are used to implementing their code directly

from the shell (Python or IPython), some IDEs (Interactive Development Environments)

are also available. In fact, in addition to a text editor, these graphics editors also provide

a series of tools that are very useful during the drafting of the code. For example, the

auto-completion of code, viewing the documentation associated with the commands,

debugging, and breakpoints are only some of the tools that this kind of application can

provide.

Chapter 2 IntroduCtIon to the python World

https://pip.pypa.io/en/latest/installing/

41

 Spyder

Spyder (Scientific Python Development Environment) is an IDE that has similar features to

the IDE of MATLAB (see Figure 2-5). The text editor is enriched with syntax highlighting and

code analysis tools. Also, you can integrate ready-to-use widgets in your graphic applications.

Figure 2-5. The Spyder IDE

 Eclipse (pyDev)

Those of you who have developed in other programming languages certainly know

Eclipse, a universal IDE developed entirely in Java (therefore requiring Java installation

on your PC) that provides a development environment for many programming

languages (see Figure 2-6). There is also an Eclipse version for developing in Python,

thanks to the installation of an additional plugin called pyDev.

Chapter 2 IntroduCtIon to the python World

42

 Sublime

This text editor is one of the preferred environments for Python programmers (see

Figure 2-7). In fact, there are several plugins available for this application that make

Python implementation easy and enjoyable.

Figure 2-6. The Eclipse IDE

Chapter 2 IntroduCtIon to the python World

43

 Liclipse

Liclipse, similarly to Spyder, is a development environment specifically designed for

the Python language (see Figure 2-8). It is very similar to the Eclipse IDE but it is fully

adapted for a specific use in Python, without needing to install plugins like PyDev. So its

installation and settings are much simpler than Eclipse.

Figure 2-7. The Sublime IDE

Chapter 2 IntroduCtIon to the python World

44

 NinjaIDE

NinjaIDE (NinjaIDE is “Not Just Another IDE”), which characterized by a name that is

a recursive acronym, is a specialized IDE for the Python language (see Figure 2-9). It’s

a very recent application on which the efforts of many developers are focused. Already

very promising, it is likely that in the coming years, this IDE will be a source of many

surprises.

Figure 2-8. The Liclipse IDE

Chapter 2 IntroduCtIon to the python World

45

 Komodo IDE

Komodo is a very powerful IDE full of tools that make it a complete and professional

development environment (see Figure 2-10). Paid software and written in C++, the

Komodo development environment is adaptable to many programming languages,

including Python.

Figure 2-9. The Ninja IDE

Chapter 2 IntroduCtIon to the python World

46

 SciPy
SciPy (pronounced “sigh pie”) is a set of open-source Python libraries specialized for

scientific computing. Many of these libraries are the protagonists of many chapters of the

book, given that their knowledge is critical to data analysis. Together they constitute a

set of tools for calculating and displaying data. It has little to envy from other specialized

environments for calculation and data analysis (such as R or MATLAB). Among the

libraries that are part of the SciPy group, there are three in particular that are discussed

in the following chapters:

• NumPy

• matplotlib

• Pandas

Figure 2-10. The Komodo IDE

Chapter 2 IntroduCtIon to the python World

47

 NumPy
This library, whose name means numerical Python, constitutes the core of many other

Python libraries that have originated from it. Indeed, NumPy is the foundation library

for scientific computing in Python since it provides data structures and high-performing

functions that the basic package of the Python cannot provide. In fact, as you will see

later in the book, NumPy defines a specific data structure that is an N-dimensional array

defined as ndarray.

Knowledge of this library is essential in terms of numerical calculations since its

correct use can greatly influence the performance of your computations. Throughout

the book, this library is almost omnipresent because of its unique characteristics, so an

entire chapter is devoted to it (Chapter 3).

This package provides some features that will be added to the standard Python:

• Ndarray: A multidimensional array much faster and more efficient

than those provided by the basic package of Python.

• Element-wise computation: A set of functions for performing this type

of calculation with arrays and mathematical operations between

arrays.

• Reading-writing datasets: A set of tools for reading and writing data

stored in the hard disk.

• Integration with other languages such as C, C++, and FORTRAN: A

set of tools to integrate code developed with these programming

languages.

 Pandas
This package provides complex data structures and functions specifically designed to

make the work on them easy, fast, and effective. This package is the core of data analysis

in Python. Therefore, the study and application of this package is the main goal on which

you will work throughout the book (especially in Chapters 4, 5, and 6). Knowledge of its

every detail, especially when it is applied to data analysis, is a fundamental objective of

this book.

The fundamental concept of this package is the DataFrame, a two-dimensional

tabular data structure with row and column labels.

Chapter 2 IntroduCtIon to the python World

48

Pandas applies the high-performance properties of the NumPy library to the

manipulation of data in spreadsheets or in relational databases (SQL databases). In fact,

by using sophisticated indexing, it will be easy to carry out many operations on this kind

of data structure, such as reshaping, slicing, aggregations, and the selection of subsets.

 matplotlib
This package is the Python library that is currently most popular for producing plots and

other data visualizations in 2D. Since data analysis requires visualization tools, this is the

library that best suits this purpose. In Chapter 7, you learn about this rich library in detail

so you will know how to represent the results of your analysis in the best way.

 Conclusions
During the course of this chapter, all the fundamental aspects characterizing the Python

world have been illustrated. The basic concepts of the Python programming language

were introduced, with brief examples explaining its innovative aspects and how it stands

out compared to other programming languages. In addition, different ways of using

Python at various levels were presented. First you saw how to use a simple command-

line interpreter, then a set of simple graphical user interfaces were shown until you got

to complex development environments, known as IDEs, such as Spyder, Liclipse, and

NinjaIDE.

Even the highly innovative project Jupyter (IPython) was presented, showing you

how you can develop Python code interactively, in particular with the Jupyter Notebook.

Moreover, the modular nature of Python was highlighted with the ability to expand

the basic set of standard functions provided by Python’s external libraries. In this regard,

the PyPI online repository was shown along with other Python distributions such as

Anaconda and Enthought Canopy.

In the next chapter, you deal with the first library that is the basis of all numerical

calculations in Python: NumPy. You learn about the ndarray, a data structure which

is the basis of the more complex data structures used in data analysis in the following

chapters.

Chapter 2 IntroduCtIon to the python World

49
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_3

CHAPTER 3

The NumPy Library
NumPy is a basic package for scientific computing with Python and especially for data

analysis. In fact, this library is the basis of a large amount of mathematical and scientific

Python packages, and among them, as you will see later in the book, the pandas

library. This library, specialized for data analysis, is fully developed using the concepts

introduced by NumPy. In fact, the built-in tools provided by the standard Python library

could be too simple or inadequate for most of the calculations in data analysis.

Having knowledge of the NumPy library is important to being able to use all

scientific Python packages, and particularly, to use and understand the pandas library.

The pandas library is the main subject of the following chapters.

If you are already familiar with this library, you can proceed directly to the next

chapter; otherwise you may see this chapter as a way to review the basic concepts or to

regain familiarity with it by running the examples in this chapter.

 NumPy: A Little History
At the dawn of the Python language, the developers needed to perform numerical

calculations, especially when this language was being used by the scientific community.

The first attempt was Numeric, developed by Jim Hugunin in 1995, which was

followed by an alternative package called Numarray. Both packages were specialized for

the calculation of arrays, and each had strengths depending on in which case they were

used. Thus, they were used differently depending on the circumstances. This ambiguity

led then to the idea of unifying the two packages. Travis Oliphant started to develop the

NumPy library for this purpose. Its first release (v 1.0) occurred in 2006.

From that moment on, NumPy proved to be the extension library of Python for

scientific computing, and it is currently the most widely used package for the calculation

of multidimensional arrays and large arrays. In addition, the package comes with a range

of functions that allow you to perform operations on arrays in a highly efficient way and

perform high-level mathematical calculations.

50

Currently, NumPy is open source and licensed under BSD. There are many

contributors who have expanded the potential of this library.

 The NumPy Installation
Generally, this module is present as a basic package in most Python distributions;

however, if not, you can install it later.

On Linux (Ubuntu and Debian), use:

sudo apt-get install python-numpy

On Linux (Fedora)

sudo yum install numpy scipy

On Windows with Anaconda, use:

conda install numpy

Once NumPy is installed on your distribution, to import the NumPy module within

your Python session, write the following:

>>> import numpy as np

 Ndarray: The Heart of the Library
The NumPy library is based on one main object: ndarray (which stands for

N-dimensional array). This object is a multidimensional homogeneous array with a

predetermined number of items: homogeneous because virtually all the items in it are

of the same type and the same size. In fact, the data type is specified by another NumPy

object called dtype (data-type); each ndarray is associated with only one type of dtype.

The number of the dimensions and items in an array is defined by its shape, a tuple

of N-positive integers that specifies the size for each dimension. The dimensions are

defined as axes and the number of axes as rank.

Moreover, another peculiarity of NumPy arrays is that their size is fixed, that is, once

you define their size at the time of creation, it remains unchanged. This behavior is

different from Python lists, which can grow or shrink in size.

Chapter 3 the Numpy Library

51

The easiest way to define a new ndarray is to use the array() function, passing a

Python list containing the elements to be included in it as an argument.

>>> a = np.array([1, 2, 3])

>>> a

array([1, 2, 3])

You can easily check that a newly created object is an ndarray by passing the new

variable to the type() function.

>>> type(a)

<type 'numpy.ndarray'>

In order to know the associated dtype to the newly created ndarray, you have to use

the dtype attribute.

Note the result of dtype, shape, and other attributes can vary among different
operating systems and python distributions.

>>> a.dtype

dtype('int64')

The just-created array has one axis, and then its rank is 1, while its shape should be

(3,1). To obtain these values from the corresponding array, it is sufficient to use the ndim

attribute for getting the axes, the size attribute to know the array length, and the shape

attribute to get its shape.

>>> a.ndim

1

>>> a.size

3

>>> a.shape

(3,)

Chapter 3 the Numpy Library

52

What you have just seen is the simplest case of a one-dimensional array. But the use

of arrays can be easily extended to several dimensions. For example, if you define a two-

dimensional array 2x2:

>>> b = np.array([[1.3, 2.4],[0.3, 4.1]])

>>> b.dtype

dtype('float64')

>>> b.ndim

2

>>> b.size

4

>>> b.shape

(2, 2)

This array has rank 2, since it has two axes, each of length 2.

Another important attribute is itemsize, which can be used with ndarray objects. It

defines the size in bytes of each item in the array, and data is the buffer containing the

actual elements of the array. This second attribute is still not generally used, since to

access the data within the array you will use the indexing mechanism that you will see in

the next sections.

>>> b.itemsize

8

>>> b.data

<read-write buffer for 0x0000000002D34DF0, size 32, offset 0 at

0x0000000002D5FEA0>

 Create an Array
To create a new array, you can follow different paths. The most common path is the one

you saw in the previous section through a list or sequence of lists as arguments to the

array() function.

>>> c = np.array([[1, 2, 3],[4, 5, 6]])

>>> c

array([[1, 2, 3],

 [4, 5, 6]])

Chapter 3 the Numpy Library

53

The array() function, in addition to lists, can accept tuples and sequences of tuples.

>>> d = np.array(((1, 2, 3),(4, 5, 6)))

>>> d

array([[1, 2, 3],

 [4, 5, 6]])

It can also accept sequences of tuples and interconnected lists .

>>> e = np.array([(1, 2, 3), [4, 5, 6], (7, 8, 9)])

>>> e

array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

 Types of Data
So far you have seen only simple integer and float numeric values, but NumPy arrays are

designed to contain a wide variety of data types (see Table 3-1). For example, you can use

the data type string:

>>> g = np.array([['a', 'b'],['c', 'd']])

>>> g

array([['a', 'b'],

 ['c', 'd']],

 dtype='|<U1')

>>> g.dtype

dtype('<U1')

>>> g.dtype.name

'str32'

Chapter 3 the Numpy Library

54

 The dtype Option
The array() function does not accept a single argument. You have seen that each

ndarray object is associated with a dtype object that uniquely defines the type of data

that will occupy each item in the array. By default, the array() function can associate

the most suitable type according to the values contained in the sequence of lists or

tuples. Actually, you can explicitly define the dtype using the dtype option as argument

of the function.

Table 3-1. Data Types Supported by NumPy

Data Type Description

bool_ boolean (true or false) stored as a byte

int_ Default integer type (same as C long; normally either int64 or int32)

intc identical to C int (normally int32 or int64)

intp integer used for indexing (same as C size_t; normally either int32 or int64)

int8 byte (–128 to 127)

int16 integer (–32768 to 32767)

int32 integer (–2147483648 to 2147483647)

int64 integer (–9223372036854775808 to 9223372036854775807)

uint8 unsigned integer (0 to 255)

uint16 unsigned integer (0 to 65535)

uint32 unsigned integer (0 to 4294967295)

uint64 unsigned integer (0 to 18446744073709551615)

float_ Shorthand for float64

float16 half precision float: sign bit, 5-bit exponent, 10-bit mantissa

float32 Single precision float: sign bit, 8-bit exponent, 23-bit mantissa

float64 Double precision float: sign bit, 11-bit exponent, 52-bit mantissa

complex_ Shorthand for complex128

complex64 Complex number, represented by two 32-bit floats (real and imaginary components)

complex128 Complex number, represented by two 64-bit floats (real and imaginary components)

Chapter 3 the Numpy Library

55

For example, if you want to define an array with complex values, you can use the

dtype option as follows:

>>> f = np.array([[1, 2, 3],[4, 5, 6]], dtype=complex)

>>> f

array([[1.+0.j, 2.+0.j, 3.+0.j],

 [4.+0.j, 5.+0.j, 6.+0.j]])

 Intrinsic Creation of an Array
The NumPy library provides a set of functions that generate ndarrays with initial content,

created with different values depending on the function. Throughout the chapter, and

throughout the book, you’ll discover that these features will be very useful. In fact, they

allow a single line of code to generate large amounts of data.

The zeros() function, for example, creates a full array of zeros with dimensions

defined by the shape argument. For example, to create a two-dimensional array 3x3,

you can use:

>>> np.zeros((3, 3))

array([[0., 0., 0.],

 [0., 0., 0.],

 [0., 0., 0.]])

While the ones() function creates an array full of ones in a very similar way.

>>> np.ones((3, 3))

array([[1., 1., 1.],

 [1., 1., 1.],

 [1., 1., 1.]])

By default, the two functions created arrays with the float64 data type. A feature

that will be particularly useful is arange(). This function generates NumPy arrays

with numerical sequences that respond to particular rules depending on the passed

arguments. For example, if you want to generate a sequence of values between 0 and 10,

you will be passed only one argument to the function, that is the value with which you

want to end the sequence.

>>> np.arange(0, 10)

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Chapter 3 the Numpy Library

56

If instead of starting from zero you want to start from another value, you simply

specify two arguments: the first is the starting value and the second is the final value.

>>> np.arange(4, 10)

array([4, 5, 6, 7, 8, 9])

It is also possible to generate a sequence of values with precise intervals between

them. If the third argument of the arange() function is specified, this will represent the

gap between one value and the next one in the sequence of values.

>>> np.arange(0, 12, 3)

array([0, 3, 6, 9])

In addition, this third argument can also be a float.

>>> np.arange(0, 6, 0.6)

array([0. , 0.6, 1.2, 1.8, 2.4, 3. , 3.6, 4.2, 4.8, 5.4])

So far you have only created one-dimensional arrays. To generate two-dimensional

arrays you can still continue to use the arange() function but combined with the

reshape() function. This function divides a linear array in different parts in the manner

specified by the shape argument.

>>> np.arange(0, 12).reshape(3, 4)

array([[0, 1, 2, 3],

 [4, 5, 6, 7],

 [8, 9, 10, 11]])

Another function very similar to arange() is linspace(). This function still takes as

its first two arguments the initial and end values of the sequence, but the third argument,

instead of specifying the distance between one element and the next, defines the

number of elements into which we want the interval to be split.

>>> np.linspace(0,10,5)

array([0. , 2.5, 5. , 7.5, 10.])

Finally, another method to obtain arrays already containing values is to fill them

with random values. This is possible using the random() function of the numpy.random

module. This function will generate an array with many elements as specified in the

argument.

Chapter 3 the Numpy Library

57

>>> np.random.random(3)

array([0.78610272, 0.90630642, 0.80007102])

The numbers obtained will vary with every run. To create a multidimensional array,

you simply pass the size of the array as an argument.

>>> np.random.random((3,3))

array([[0.07878569, 0.7176506 , 0.05662501],

 [0.82919021, 0.80349121, 0.30254079],

 [0.93347404, 0.65868278, 0.37379618]])

 Basic Operations
So far you have seen how to create a new NumPy array and how items are defined in it.

Now it is the time to see how to apply various operations to them.

 Arithmetic Operators
The first operations that you will perform on arrays are the arithmetic operators. The

most obvious are adding and multiplying an array by a scalar.

>>> a = np.arange(4)

>>> a

array([0, 1, 2, 3])

>>> a+4

array([4, 5, 6, 7])

>>> a*2

array([0, 2, 4, 6])

These operators can also be used between two arrays. In NumPy, these operations

are element-wise, that is, the operators are applied only between corresponding

elements. These are objects that occupy the same position, so that the end result will be

a new array containing the results in the same location of the operands (see Figure 3-1).

Chapter 3 the Numpy Library

58

>>> b = np.arange(4,8)

>>> b

array([4, 5, 6, 7])

>>> a + b

array([4, 6, 8, 10])

>>> a – b

array([–4, –4, –4, –4])

>>> a * b

array([0, 5, 12, 21])

Figure 3-1. Element-wise addition

Moreover, these operators are also available for functions, provided that the value

returned is a NumPy array. For example, you can multiply the array by the sine or the

square root of the elements of array b.

>>> a * np.sin(b)

array([–0. , –0.95892427, –0.558831 , 1.9709598])

>>> a * np.sqrt(b)

array([0. , 2.23606798, 4.89897949, 7.93725393])

Moving on to the multidimensional case, even here the arithmetic operators

continue to operate element-wise.

Chapter 3 the Numpy Library

59

>>> A = np.arange(0, 9).reshape(3, 3)

>>> A

array([[0, 1, 2],

 [3, 4, 5],

 [6, 7, 8]])

>>> B = np.ones((3, 3))

>>> B

array([[1., 1., 1.],

 [1., 1., 1.],

 [1., 1., 1.]])

>>> A * B

array([[0., 1., 2.],

 [3., 4., 5.],

 [6., 7., 8.]])

 The Matrix Product
The choice of operating element-wise is a peculiar aspect of the NumPy library. In

fact, in many other tools for data analysis, the * operator is understood as a matrix

product when it is applied to two matrices. Using NumPy, this kind of product is instead

indicated by the dot() function. This operation is not element-wise.

>>> np.dot(A,B)

array([[3., 3., 3.],

 [12., 12., 12.],

 [21., 21., 21.]])

The result at each position is the sum of the products of each element of

the corresponding row of the first matrix with the corresponding element of the

corresponding column of the second matrix. Figure 3-2 illustrates the process carried

out during the matrix product (run for two elements).

Chapter 3 the Numpy Library

60

An alternative way to write the matrix product is to see the dot() function as an

object’s function of one of the two matrices.

>>> A.dot(B)

array([[3., 3., 3.],

 [12., 12., 12.],

 [21., 21., 21.]])

Note that since the matrix product is not a commutative operation, the order of the

operands is important. Indeed, A * B is not equal to B * A.

>>> np.dot(B,A)

array([[9., 12., 15.],

 [9., 12., 15.],

 [9., 12., 15.]])

 Increment and Decrement Operators
Actually, there are no such operators in Python, since there are no operators called ++ or

––. To increase or decrease values, you have to use operators such as += and –=. These

operators are not different from ones you saw earlier, except that instead of creating a

new array with the results, they will reassign the results to the same array.

Figure 3-2. Calculating matrix elements as a result of a matrix product

Chapter 3 the Numpy Library

61

>>> a = np.arange(4)

>>> a

array([0, 1, 2, 3])

>>> a += 1

>>> a

array([1, 2, 3, 4])

>>> a –= 1

>>> a

array([0, 1, 2, 3])

Therefore, using these operators is much more extensive than the simple

incremental operators that increase the values by one unit, and they can be applied in

many cases. For instance, you need them every time you want to change the values in an

array without generating a new one.

array([0, 1, 2, 3])

>>> a += 4

>>> a

array([4, 5, 6, 7])

>>> a *= 2

>>> a

array([8, 10, 12, 14])

 Universal Functions (ufunc)
A universal function, generally called ufunc, is a function operating on an array in an

element-by-element fashion. This means that it acts individually on each single element

of the input array to generate a corresponding result in a new output array. In the end,

you obtain an array of the same size as the input.

There are many mathematical and trigonometric operations that meet this

definition; for example, calculating the square root with sqrt(), the logarithm with

log(), or the sin with sin().

>>> a = np.arange(1, 5)

>>> a

array([1, 2, 3, 4])

Chapter 3 the Numpy Library

62

>>> np.sqrt(a)

array([1. , 1.41421356, 1.73205081, 2.])

>>> np.log(a)

array([0. , 0.69314718, 1.09861229, 1.38629436])

>>> np.sin(a)

array([0.84147098, 0.90929743, 0.14112001, –0.7568025])

Many functions are already implemented in the library NumPy.

 Aggregate Functions
Aggregate functions perform an operation on a set of values, an array for example, and

produce a single result. Therefore, the sum of all the elements in an array is an aggregate

function. Many functions of this kind are implemented within the class ndarray.

>>> a = np.array([3.3, 4.5, 1.2, 5.7, 0.3])

>>> a.sum()

15.0

>>> a.min()

0.29999999999999999

>>> a.max()

5.7000000000000002

>>> a.mean()

3.0

>>> a.std()

2.0079840636817816

 Indexing, Slicing, and Iterating
In the previous sections, you saw how to create an array and how to perform operations

on it. In this section, you will see how to manipulate these objects. You’ll learn how to

select elements through indexes and slices, in order to obtain the values contained in

them or to make assignments in order to change their values. Finally, you will also see

how you can make iterations within them.

Chapter 3 the Numpy Library

63

 Indexing
Array indexing always uses square brackets ([]) to index the elements of the array so

that the elements can then be referred individually for various, uses such as extracting a

value, selecting items, or even assigning a new value.

When you create a new array, an appropriate scale index is also automatically

created (see Figure 3-3).

Figure 3-3. Indexing a monodimensional ndarray

In order to access a single element of an array, you can refer to its index.

>>> a = np.arange(10, 16)

>>> a

array([10, 11, 12, 13, 14, 15])

>>> a[4]

14

The NumPy arrays also accept negative indexes. These indexes have the same

incremental sequence from 0 to –1, –2, and so on, but in practice they cause the final

element to move gradually toward the initial element, which will be the one with the

more negative index value.

>>> a[–1]

15

>>> a[–6]

10

To select multiple items at once, you can pass array of indexes in square brackets.

>>> a[[1, 3, 4]]

array([11, 13, 14])

Chapter 3 the Numpy Library

64

Moving on to the two-dimensional case, namely the matrices, they are represented

as rectangular arrays consisting of rows and columns, defined by two axes, where axis 0

is represented by the rows and axis 1 is represented by the columns. Thus, indexing in

this case is represented by a pair of values: the first value is the index of the row and the

second is the index of the column. Therefore, if you want to access the values or select

elements in the matrix, you will still use square brackets, but this time there are two

values [row index, column index] (see Figure 3-4).

Figure 3-4. Indexing a bidimensional array

>>> A = np.arange(10, 19).reshape((3, 3))

>>> A

array([[10, 11, 12],

 [13, 14, 15],

 [16, 17, 18]])

If you want to remove the element of the third column in the second row, you have to

insert the pair [1, 2].

>>> A[1, 2]

15

Chapter 3 the Numpy Library

65

 Slicing
Slicing allows you to extract portions of an array to generate new arrays. When when

you use the Python lists to slice arrays, the resulting arrays are copies, but in NumPy, the

arrays are views of the same underlying buffer.

Depending on the portion of the array that you want to extract (or view), you must

use the slice syntax; that is, you will use a sequence of numbers separated by colons (:)

within square brackets.

If you want to extract a portion of the array, for example one that goes from the

second to the sixth element, you have to insert the index of the starting element, that is 1,

and the index of the final element, that is 5, separated by :.

>>> a = np.arange(10, 16)

>>> a

array([10, 11, 12, 13, 14, 15])

>>> a[1:5]

array([11, 12, 13, 14])

Now if you want to extract an item from the previous portion and skip a specific

number of following items, then extract the next and skip again, you can use a third

number that defines the gap in the sequence of the elements. For example, with a value

of 2, the array will take the elements in an alternating fashion.

>>> a[1:5:2]

array([11, 13])

To better understand the slice syntax, you also should look at cases where you

do not use explicit numerical values. If you omit the first number, NumPy implicitly

interprets this number as 0 (i.e., the initial element of the array). If you omit the second

number, this will be interpreted as the maximum index of the array; and if you omit the

last number this will be interpreted as 1. All the elements will be considered without

intervals.

Chapter 3 the Numpy Library

66

>>> a[::2]

array([10, 12, 14])

>>> a[:5:2]

array([10, 12, 14])

>>> a[:5:]

array([10, 11, 12, 13, 14])

In the case of a two-dimensional array, the slicing syntax still applies, but it is

separately defined for the rows and columns. For example, if you want to extract only the

first row:

>>> A = np.arange(10, 19).reshape((3, 3))

>>> A

array([[10, 11, 12],

 [13, 14, 15],

 [16, 17, 18]])

>>> A[0,:]

array([10, 11, 12])

As you can see in the second index, if you leave only the colon without defining a

number, you will select all the columns. Instead, if you want to extract all the values of

the first column, you have to write the inverse.

>>> A[:,0]

array([10, 13, 16])

Instead, if you want to extract a smaller matrix, you need to explicitly define all

intervals with indexes that define them.

>>> A[0:2, 0:2]

array([[10, 11],

 [13, 14]])

If the indexes of the rows or columns to be extracted are not contiguous, you can

specify an array of indexes.

>>> A[[0,2], 0:2]

array([[10, 11],

 [16, 17]])

Chapter 3 the Numpy Library

67

 Iterating an Array
In Python, the iteration of the items in an array is really very simple; you just need to use

the for construct.

>>> for i in a:

... print(i)

...

10

11

12

13

14

15

Of course, even here, moving to the two-dimensional case, you could think of

applying the solution of two nested loops with the for construct. The first loop will scan

the rows of the array, and the second loop will scan the columns. Actually, if you apply

the for loop to a matrix, it will always perform a scan according to the first axis.

>>> for row in A:

... print(row)

...

[10 11 12]

[13 14 15]

[16 17 18]

If you want to make an iteration element by element, you can use the following

construct, using the for loop on A.flat.

>>> for item in A.flat:

... print(item)

...

10

11

12

13

14

15

Chapter 3 the Numpy Library

68

16

17

18

However, despite all this, NumPy offers an alternative and more elegant solution

than the for loop. Generally, you need to apply an iteration to apply a function on the

rows or on the columns or on an individual item. If you want to launch an aggregate

function that returns a value calculated for every single column or on every single row,

there is an optimal way that leaves it to NumPy to manage the iteration: the apply_

along_axis() function.

This function takes three arguments: the aggregate function, the axis on which to

apply the iteration, and the array. If the option axis equals 0, then the iteration evaluates

the elements column by column, whereas if axis equals 1 then the iteration evaluates

the elements row by row. For example, you can calculate the average values first by

column and then by row.

>>> np.apply_along_axis(np.mean, axis=0, arr=A)

array([13., 14., 15.])

>>> np.apply_along_axis(np.mean, axis=1, arr=A)

array([11., 14., 17.])

In the previous case, you used a function already defined in the NumPy library, but

nothing prevents you from defining your own functions. You also used an aggregate

function. However, nothing forbids you from using an ufunc. In this case, iterating

by column and by row produces the same result. In fact, using a ufunc performs one

iteration element-by-element.

>>> def foo(x):

... return x/2

...

>>> np.apply_along_axis(foo, axis=1, arr=A)

array([[5., 5.5, 6.],

 [6.5, 7., 7.5],

 [8., 8.5, 9.]])

>>> np.apply_along_axis(foo, axis=0, arr=A)

array([[5., 5.5, 6.],

 [6.5, 7., 7.5],

 [8., 8.5, 9.]])

Chapter 3 the Numpy Library

69

As you can see, the ufunc function halves the value of each element of the input

array regardless of whether the iteration is performed by row or by column.

 Conditions and Boolean Arrays
So far you have used indexing and slicing to select or extract a subset of an array. These

methods use numerical indexes. An alternative way to selectively extract the elements in

an array is to use the conditions and Boolean operators.

Suppose you wanted to select all the values that are less than 0.5 in a 4x4 matrix

containing random numbers between 0 and 1.

>>> A = np.random.random((4, 4))

>>> A

array([[0.03536295, 0.0035115 , 0.54742404, 0.68960999],

 [0.21264709, 0.17121982, 0.81090212, 0.43408927],

 [0.77116263, 0.04523647, 0.84632378, 0.54450749],

 [0.86964585, 0.6470581 , 0.42582897, 0.22286282]])

Once a matrix of random numbers is defined, if you apply an operator condition,

you will receive as a return value a Boolean array containing true values in the positions

in which the condition is satisfied. In this example, that is all the positions in which the

values are less than 0.5.

>>> A < 0.5

array([[True, True, False, False],

 [True, True, False, True],

 [False, True, False, False],

 [False, False, True, True]], dtype=bool)

Actually, the Boolean arrays are used implicitly for making selections of parts of

arrays. In fact, by inserting the previous condition directly inside the square brackets,

you will extract all elements smaller than 0.5, so as to obtain a new array.

>>> A[A < 0.5]

array([0.03536295, 0.0035115 , 0.21264709, 0.17121982, 0.43408927,

 0.04523647, 0.42582897, 0.22286282])

Chapter 3 the Numpy Library

70

 Shape Manipulation
You already saw, during the creation of a two-dimensional array, how it is possible to

convert a one-dimensional array into a matrix, thanks to the reshape() function.

>>> a = np.random.random(12)

>>> a

array([0.77841574, 0.39654203, 0.38188665, 0.26704305, 0.27519705,

 0.78115866, 0.96019214, 0.59328414, 0.52008642, 0.10862692,

 0.41894881, 0.73581471])

>>> A = a.reshape(3, 4)

>>> A

array([[0.77841574, 0.39654203, 0.38188665, 0.26704305],

 [0.27519705, 0.78115866, 0.96019214, 0.59328414],

 [0.52008642, 0.10862692, 0.41894881, 0.73581471]])

The reshape() function returns a new array and can therefore create new objects.

However if you want to modify the object by modifying the shape, you have to assign a

tuple containing the new dimensions directly to its shape attribute.

>>> a.shape = (3, 4)

>>> a

array([[0.77841574, 0.39654203, 0.38188665, 0.26704305],

 [0.27519705, 0.78115866, 0.96019214, 0.59328414],

 [0.52008642, 0.10862692, 0.41894881, 0.73581471]])

As you can see, this time it is the starting array to change shape and there is no

object returned. The inverse operation is also possible, that is, you can convert a

two- dimensional array into a one-dimensional array, by using the ravel() function.

>>> a = a.ravel()

array([0.77841574, 0.39654203, 0.38188665, 0.26704305, 0.27519705,

 0.78115866, 0.96019214, 0.59328414, 0.52008642, 0.10862692,

 0.41894881, 0.73581471])

Chapter 3 the Numpy Library

71

Or even here acting directly on the shape attribute of the array itself.

>>> a.shape = (12)

>>> a

array([0.77841574, 0.39654203, 0.38188665, 0.26704305, 0.27519705,

 0.78115866, 0.96019214, 0.59328414, 0.52008642, 0.10862692,

 0.41894881, 0.73581471])

Another important operation is transposing a matrix, which is inverting the columns

with the rows. NumPy provides this feature with the transpose() function.

>>> A.transpose()

array([[0.77841574, 0.27519705, 0.52008642],

 [0.39654203, 0.78115866, 0.10862692],

 [0.38188665, 0.96019214, 0.41894881],

 [0.26704305, 0.59328414, 0.73581471]])

 Array Manipulation
Often you need to create an array using already created arrays. In this section, you will

see how to create new arrays by joining or splitting arrays that are already defined.

 Joining Arrays
You can merge multiple arrays to form a new one that contains all of the arrays. NumPy

uses the concept of stacking, providing a number of functions in this regard. For

example, you can perform vertical stacking with the vstack() function, which combines

the second array as new rows of the first array. In this case, the array grows in a vertical

direction. By contrast, the hstack() function performs horizontal stacking; that is, the

second array is added to the columns of the first array.

>>> A = np.ones((3, 3))

>>> B = np.zeros((3, 3))

>>> np.vstack((A, B))

array([[1., 1., 1.],

 [1., 1., 1.],

 [1., 1., 1.],

Chapter 3 the Numpy Library

72

 [0., 0., 0.],

 [0., 0., 0.],

 [0., 0., 0.]])

>>> np.hstack((A,B))

array([[1., 1., 1., 0., 0., 0.],

 [1., 1., 1., 0., 0., 0.],

 [1., 1., 1., 0., 0., 0.]])

Two other functions performing stacking between multiple arrays are column_

stack() and row_stack(). These functions operate differently than the two previous

functions. Generally these functions are used with one-dimensional arrays, which are

stacked as columns or rows in order to form a new two-dimensional array.

>>> a = np.array([0, 1, 2])

>>> b = np.array([3, 4, 5])

>>> c = np.array([6, 7, 8])

>>> np.column_stack((a, b, c))

array([[0, 3, 6],

 [1, 4, 7],

 [2, 5, 8]])

>>> np.row_stack((a, b, c))

array([[0, 1, 2],

 [3, 4, 5],

 [6, 7, 8]])

 Splitting Arrays
In the previous section, you saw how to assemble multiple arrays through stacking. Now

you will see how to divide an array into several parts. In NumPy, you use splitting to do

this. Here too, you have a set of functions that work both horizontally with the hsplit()

function and vertically with the vsplit() function.

>>> A = np.arange(16).reshape((4, 4))

>>> A

array([[0, 1, 2, 3],

 [4, 5, 6, 7],

 [8, 9, 10, 11],

 [12, 13, 14, 15]])

Chapter 3 the Numpy Library

73

Thus, if you want to split the array horizontally, meaning the width of the array is

divided into two parts, the 4x4 matrix A will be split into two 2x4 matrices.

>>> [B,C] = np.hsplit(A, 2)

>>> B

array([[0, 1],

 [4, 5],

 [8, 9],

 [12, 13]])

>>> C

array([[2, 3],

 [6, 7],

 [10, 11],

 [14, 15]])

Instead, if you want to split the array vertically, meaning the height of the array is

divided into two parts, the 4x4 matrix A will be split into two 4x2 matrices.

>>> [B,C] = np.vsplit(A, 2)

>>> B

array([[0, 1, 2, 3],

 [4, 5, 6, 7]])

>>> C

array([[8, 9, 10, 11],

 [12, 13, 14, 15]])

A more complex command is the split() function, which allows you to split the

array into nonsymmetrical parts. Passing the array as an argument, you have also to

specify the indexes of the parts to be divided. If you use the option axis = 1, then the

indexes will be columns; if instead the option is axis = 0, then they will be row indexes.

For example, if you want to divide the matrix into three parts, the first of which will

include the first column, the second will include the second and the third column, and

the third will include the last column, you must specify three indexes in the following way.

>>> [A1,A2,A3] = np.split(A,[1,3],axis=1)

>>> A1

array([[0],

 [4],

Chapter 3 the Numpy Library

74

 [8],

 [12]])

>>> A2

array([[1, 2],

 [5, 6],

 [9, 10],

 [13, 14]])

>>> A3

array([[3],

 [7],

 [11],

 [15]])

You can do the same thing by row.

>>> [A1,A2,A3] = np.split(A,[1,3],axis=0)

>>> A1

array([[0, 1, 2, 3]])

>>> A2

array([[4, 5, 6, 7],

 [8, 9, 10, 11]])

>>> A3

array([[12, 13, 14, 15]])

This feature also includes the functionalities of the vsplit() and hsplit()

functions.

 General Concepts
This section describes the general concepts underlying the NumPy library. The

difference between copies and views is when they return values. The mechanism of

broadcasting, which occurs implicitly in many NumPy functions, is also covered in

this section.

Chapter 3 the Numpy Library

75

 Copies or Views of Objects
As you may have noticed with NumPy, especially when you are manipulating an array,

you can return a copy or a view of the array. None of the NumPy assignments produces

copies of arrays, nor any element contained in them.

>>> a = np.array([1, 2, 3, 4])

>>> b = a

>>> b

array([1, 2, 3, 4])

>>> a[2] = 0

>>> b

array([1, 2, 0, 4])

If you assign one array a to another array b, you are not copying it; array b is just

another way to call array a. In fact, by changing the value of the third element, you

change the third value of b too. When you slice an array, the object returned is a view of

the original array.

>>> c = a[0:2]

>>> c

array([1, 2])

>>> a[0] = 0

>>> c

array([0, 2])

As you can see, even when slicing, you are actually pointing to the same object. If you

want to generate a complete and distinct array, use the copy() function.

>>> a = np.array([1, 2, 3, 4])

>>> c = a.copy()

>>> c

array([1, 2, 3, 4])

>>> a[0] = 0

>>> c

array([1, 2, 3, 4])

In this case, even when you change the items in array a, array c remains unchanged.

Chapter 3 the Numpy Library

76

 Vectorization
Vectorization, along with the broadcasting, is the basis of the internal implementation

of NumPy. Vectorization is the absence of an explicit loop during the developing of the

code. These loops actually cannot be omitted, but are implemented internally and then

are replaced by other constructs in the code. The application of vectorization leads to

a more concise and readable code, and you can say that it will appear more “Pythonic”

in its appearance. In fact, thanks to the vectorization, many operations take on a more

mathematical expression. For example, NumPy allows you to express the multiplication

of two arrays as shown:

a * b

Or even two matrices:

A * B

In other languages, such operations would be expressed with many nested loops and

the for construct. For example, the first operation would be expressed in the following way:

for (i = 0; i < rows; i++){

 c[i] = a[i]*b[i];

}

While the product of matrices would be expressed as follows:

for(i=0; i < rows; i++){

 for(j=0; j < columns; j++){

 c[i][j] = a[i][j]*b[i][j];

 }

}

You can see that using NumPy makes the code more readable and more

mathematical.

 Broadcasting
Broadcasting allows an operator or a function to act on two or more arrays to operate

even if these arrays do not have the same shape. That said, not all the dimensions can be

subjected to broadcasting; they must meet certain rules.

Chapter 3 the Numpy Library

77

You saw that using NumPy, you can classify multidimensional arrays through a

shape that is a tuple representing the length of the elements of each dimension.

Two arrays can be subjected to broadcasting when all their dimensions are

compatible, i.e., the length of each dimension must be equal or one of them must be

equal to 1. If neither of these conditions is met, you get an exception that states that the

two arrays are not compatible.

>>> A = np.arange(16).reshape(4, 4)

>>> b = np.arange(4)

>>> A

array([[0, 1, 2, 3],

 [4, 5, 6, 7],

 [8, 9, 10, 11],

 [12, 13, 14, 15]])

>>> b

array([0, 1, 2, 3])

In this case, you obtain two arrays:

4 x 4

4

There are two rules of broadcasting. First you must add a 1 to each missing

dimension. If the compatibility rules are now satisfied, you can apply broadcasting and

move to the second rule. For example:

4 x 4

4 x 1

The rule of compatibility is met. Then you can move to the second rule of

broadcasting. This rule explains how to extend the size of the smallest array so that it’s

the size of the biggest array, so that the element-wise function or operator is applicable.

The second rule assumes that the missing elements (size, length 1) are filled with

replicas of the values contained in extended sizes (see Figure 3-5).

Chapter 3 the Numpy Library

78

Now that the two arrays have the same dimensions, the values inside may be added

together.

>>> A + b

array([[0, 2, 4, 6],

 [4, 6, 8, 10],

 [8, 10, 12, 14],

 [12, 14, 16, 18]])

This is a simple case in which one of the two arrays is smaller than the other. There

may be more complex cases in which the two arrays have different shapes and each is

smaller than the other only in certain dimensions.

>>> m = np.arange(6).reshape(3, 1, 2)

>>> n = np.arange(6).reshape(3, 2, 1)

>>> m

array([[[0, 1]],

 [[2, 3]],

 [[4, 5]]])

>>> n

array([[[0],

 [1]],

 [[2],

 [3]],

 [[4],

 [5]]])

Figure 3-5. Applying the second broadcasting rule

Chapter 3 the Numpy Library

79

Even in this case, by analyzing the shapes of the two arrays, you can see that they are

compatible and therefore the rules of broadcasting can be applied.

3 x 1 x 2

3 x 2 x 1

In this case, both arrays undergo the extension of dimensions (broadcasting).

m* = [[[0,1], n* = [[[0,0],

 [0,1]], [1,1]],

 [[2,3], [[2,2],

 [2,3]], [3,3]],

 [[4,5], [[4,4],

 [4,5]]] [5,5]]]

Then you can apply, for example, the addition operator between the two arrays,

operating element-wise.

>>> m + n

array([[[0, 1],

 [1, 2]],

 [[4, 5],

 [5, 6]],

 [[8, 9],

 [9, 10]]])

 Structured Arrays
So far in the various examples in the previous sections, you saw monodimensional and

two-dimensional arrays. NumPy allows you to create arrays that are much more complex

not only in size, but in the structure, called structured arrays. This type of array contains

structs or records instead of individual items.

For example, you can create a simple array of structs as items. Thanks to the dtype

option, you can specify a list of comma-separated specifiers to indicate the elements that

will constitute the struct, along with data type and order.

Chapter 3 the Numpy Library

80

bytes b1

int i1, i2, i4, i8

unsigned ints u1, u2, u4, u8

floats f2, f4, f8

complex c8, c16

fixed length strings a<n>

For example, if you want to specify a struct consisting of an integer, a character

string of length 6 and a Boolean value, you will specify the three types of data in the

dtype option with the right order using the corresponding specifiers.

Note the result of dtype and other format attributes can vary among different
operating systems and python distributions.

>>> structured = np.array([(1, 'First', 0.5, 1+2j),(2, 'Second', 1.3,

2-2j), (3, 'Third', 0.8, 1+3j)],dtype=('i2, a6, f4, c8'))

>>> structured

array([(1, b'First', 0.5, 1+2.j),

 (2, b'Second', 1.3, 2.-2.j),

 (3, b'Third', 0.8, 1.+3.j)],

 dtype=[('f0', '<i2'), ('f1', 'S6'), ('f2', '<f4'), ('f3', '<c8')])

You can also use the data type explicitly specifying int8, uint8, float16, complex64,

and so forth.

>>> structured = np.array([(1, 'First', 0.5, 1+2j),(2, 'Second', 1.3,2-2j),

(3, 'Third', 0.8, 1+3j)],dtype=('

int16, a6, float32, complex64'))

>>> structured

array([(1, b'First', 0.5, 1.+2.j),

 (2, b'Second', 1.3, 2.-2.j),

 (3, b'Third', 0.8, 1.+3.j)],

 dtype=[('f0', '<i2'), ('f1', 'S6'), ('f2', '<f4'), ('f3', '<c8')])

Both cases have the same result. Inside the array, you see a dtype sequence

containing the name of each item of the struct with the corresponding data type.

Chapter 3 the Numpy Library

81

Writing the appropriate reference index, you obtain the corresponding row, which

contains the struct.

>>> structured[1]

(2, 'bSecond', 1.3, 2.-2.j)

The names that are assigned automatically to each item of struct can be considered

as the names of the columns of the array. Using them as a structured index, you can refer

to all the elements of the same type, or of the same column.

>>> structured['f1']

array([b'First', b'Second', b'Third'],

 dtype='|S6')

As you have just seen, the names are assigned automatically with an f (which stands

for field) and a progressive integer that indicates the position in the sequence. In fact,

it would be more useful to specify the names with something more meaningful. This is

possible and you can do it at the time of array declaration:

>>> structured = np.array([(1,'First',0.5,1+2j),(2,'Second',1.3,2-2j),

(3,'Third',0.8,1+3j)],dtype=[(

'id','i2'),('position','a6'),('value','f4'),('complex','c8')])

>>> structured

array([(1, b'First', 0.5, 1.+2.j),

 (2, b'Second', 1.3, 2.-2.j),

 (3, b'Third', 0.8, 1.+3.j)],

 dtype=[('id', '<i2'), ('position', 'S6'), ('value', '<f4'),

('complex', '<c8')])

Or you can do it at a later time, redefining the tuples of names assigned to the dtype

attribute of the structured array.

>>> structured.dtype.names = ('id','order','value','complex')

Now you can use meaningful names for the various field types:

>>> structured['order']

array([b'First', b'Second', b'Third'],

 dtype='|S6')

Chapter 3 the Numpy Library

82

 Reading and Writing Array Data on Files
A very important aspect of NumPy that has not been discussed yet is the process of

reading data contained in a file. This procedure is very useful, especially when you

have to deal with large amounts of data collected in arrays. This is a very common data

analysis operation, since the size of the dataset to be analyzed is almost always huge, and

therefore it is not advisable or even possible to manage it manually.

NumPy provides a set of functions that allow data analysts to save the results of their

calculations in a text or binary file. Similarly, NumPy allows you to read and convert

written data in a file into an array.

 Loading and Saving Data in Binary Files
NumPy provides a pair of functions called save() and load() that enable you to save

and then later retrieve data stored in binary format.

Once you have an array to save, for example, one that contains the results of your

data analysis processing, you simply call the save() function and specify as arguments

the name of the file and the array. The file will automatically be given the .npy extension.

>>> data=([[0.86466285, 0.76943895, 0.22678279],

 [0.12452825, 0.54751384, 0.06499123],

 [0.06216566, 0.85045125, 0.92093862],

 [0.58401239, 0.93455057, 0.28972379]])

>>> np.save('saved_data',data)

When you need to recover the data stored in a .npy file, you use the load() function

by specifying the filename as the argument, this time adding the extension .npy.

>>> loaded_data = np.load('saved_data.npy')

>>> loaded_data

array([[0.86466285, 0.76943895, 0.22678279],

 [0.12452825, 0.54751384, 0.06499123],

 [0.06216566, 0.85045125, 0.92093862],

 [0.58401239, 0.93455057, 0.28972379]])

Chapter 3 the Numpy Library

83

 Reading Files with Tabular Data
Many times, the data that you want to read or save are in textural format (TXT or CSV,

for example). You might save the data in this format, instead of binary, because the files

can then be accessed outside independently if you are working with NumPy or with

any other application. Take for example the case of a set of data in the CSV (Comma-

Separated Values) format, in which data are collected in a tabular format where the

values are separated by commas (see Listing 3-1).

Listing 3-1. ch3_data.csv

id,value1,value2,value3

1,123,1.4,23

2,110,0.5,18

3,164,2.1,19

To be able to read your data in a text file and insert values into an array, NumPy

provides a function called genfromtxt(). Normally, this function takes three

arguments—the name of the file containing the data, the character that separates the

values from each other (in this case is a comma), and whether the data contain column

headers.

>>> data = np.genfromtxt('ch3_data.csv', delimiter=',', names=True)

>>> data

array([(1.0, 123.0, 1.4, 23.0), (2.0, 110.0, 0.5, 18.0),

 (3.0, 164.0, 2.1, 19.0)],

 dtype=[('id', '<f8'), ('value1', '<f8'), ('value2', '<f8'),

('value3', '<f8')])

As you can see from the result, you get a structured array in which the column

headings have become the field names.

This function implicitly performs two loops: the first loop reads a line at a time,

and the second loop separates and converts the values contained in it, inserting the

consecutive elements created specifically. One positive aspect of this feature is that if

some data are missing, the function can handle them.

Take for example the previous file (see Listing 3-2) with some items removed. Save it

as data2.csv.

Chapter 3 the Numpy Library

84

Listing 3-2. ch3_data2.csv

id,value1,value2,value3

1,123,1.4,23

2,110,,18

3,,2.1,19

Launching these commands, you can see how the genfromtxt() function replaces

the blanks in the file with nan values.

>>> data2 = np.genfromtxt('ch3_data2.csv', delimiter=',', names=True)

>>> data2

array([(1.0, 123.0, 1.4, 23.0), (2.0, 110.0, nan, 18.0),

 (3.0, nan, 2.1, 19.0)],

 dtype=[('id', '<f8'), ('value1', '<f8'), ('value2', '<f8'),

('value3', '<f8')])

At the bottom of the array, you can find the column headings contained in the file.

These headers can be considered labels that act as indexes to extract the values by

column:

>>> data2['id']

array([1., 2., 3.])

Instead, by using the numerical indexes in the classic way, you will extract data

corresponding to the rows.

>>> data2[0]

(1.0, 123.0, 1.4, 23.0)

 Conclusions
In this chapter, you learned about all the main aspects of the NumPy library and became

familiar with a range of features that form the basis of many other aspects you’ll face in

the course of the book. In fact, many of these concepts will be taken from other scientific

and computing libraries that are more specialized, but that have been structured and

developed on the basis of this library.

Chapter 3 the Numpy Library

85

You saw how, thanks to the ndarray, you can extend the functionalities of Python,

making it a suitable language for scientific computing and data analysis.

Knowledge of NumPy is therefore crucial to anyone who wants to take on the world

of data analysis.

In the next chapter, we begin to introduce a new library, called pandas, that is

structured on NumPy and so encompasses all the basic concepts illustrated in this

chapter. However, pandas extends these concepts so they are more suitable to

data analysis.

Chapter 3 the Numpy Library

87
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_4

CHAPTER 4

The pandas Library—An
Introduction
This chapter gets into the heart of this book: the pandas library. This fantastic Python

library is a perfect tool for anyone who wants to perform data analysis using Python as a

programming language.

First you will learn about the fundamental aspects of this library and how to install

it on your system, and then you will become familiar with the two data structures called

series and dataframes. During the course of the chapter, you will work with a basic set

of functions provided by the pandas library, in order to perform the most common data

processing tasks. Getting familiar with these operations is a key goal of the rest of the

book. This is why it is very important to repeat this chapter until you feel comfortable

with its content.

Furthermore, with a series of examples you will learn some particularly new concepts

introduced in the pandas library: indexing data structures. You will learn how to get the

most of this feature for data manipulation in this chapter and in the next chapters.

Finally, you will see how to extend the concept of indexing to multiple levels at the

same time, through the process called hierarchical indexing.

 pandas: The Python Data Analysis Library
pandas is an open source Python library for highly specialized data analysis. It is

currently the reference point that all professionals using the Python language need to

study for the statistical purposes of analysis and decision making.

This library was designed and developed primarily by Wes McKinney starting

in 2008. In 2012, Sien Chang, one of his colleagues, was added to the development.

Together they set up one of the most used libraries in the Python community.

88

pandas arises from the need to have a specific library to analyze data that provides,

in the simplest possible way, all the instruments for data processing, data extraction, and

data manipulation.

This Python package is designed on the basis of the NumPy library. This choice, we

can say, was critical to the success and the rapid spread of pandas. In fact, this choice not

only makes this library compatible with most other modules, but also takes advantage of

the high quality of the NumPy module.

Another fundamental choice was to design ad hoc data structures for data analysis.

In fact, instead of using existing data structures built into Python or provided by other

libraries, two new data structures were developed.

These data structures are designed to work with relational data or labeled data, thus

allowing you to manage data with features similar to those designed for SQL relational

databases and Excel spreadsheets.

Throughout the book in fact, you will see a series of basic operations for data

analysis, which are normally used on database tables and spreadsheets. pandas in fact

provides an extended set of functions and methods that allow you to perform these

operations efficiently.

So pandas’ main purpose is to provide all the building blocks for anyone

approaching the data analysis world.

 Installation of pandas
The easiest and most general way to install the pandas library is to use a prepackaged

solution, i.e., installing it through an Anaconda or Enthought distribution.

 Installation from Anaconda
For those who choose to use the Anaconda distribution, managing the installation is

very simple. First you have to see if the pandas module is installed and, if so, which

version. To do this, type the following command from the terminal:

conda list pandas

Since I have the module installed on my PC (Windows), I get the following result:

packages in environment at C:\Users\Fabio\Anaconda:

#

pandas 0.20.3 py36hce827b7_2

Chapter 4 the pandas Library—an introduCtion

89

If you do not have pandas installed, you will need to install it. Enter the following

command:

conda install pandas

Anaconda will immediately check all dependencies, managing the installation of

other modules, without you having to worry too much.

Solving environment: done

Package Plan

Environment location: C:\Users\Fabio\Anaconda3

added / updated specs:

 - pandas

The following new packages will be installed:

 Pandas: 0.22.0-py36h6538335_0

Proceed ([y]/n)?

Press the y key on your keyboard to continue the installation.

Preparing transaction: done

Verifying transaction: done

Executing transaction: done

If you want to upgrade your package to a newer version, the command to do so is

very simple and intuitive:

conda update pandas

The system will check the version of pandas and the version of all the modules on

which it depends and then suggest any updates. It will then ask if you want to proceed to

the update.

 Installation from PyPI
pandas can also be installed by PyPI using this command:

pip install pandas

Chapter 4 the pandas Library—an introduCtion

90

 Installation on Linux
If you’re working on a Linux distribution, and you choose not to use any of these

prepackaged distributions, you can install the pandas module like any other package.

On Debian and Ubuntu distributions, use this command:

sudo apt-get install python-pandas

While on OpenSuse and Fedora, enter the following command:

zypper in python-pandas

 Installation from Source
If you want to compile your pandas module from the source code, you can find what you

need on GitHub at https://github.com/pandas-dev/pandas:

git clone git://github.com/pydata/pandas.git

cd pandas

python setup.py install

Make sure you have installed Cython at compile time. For more information, read

the documentation available on the Web, including the official page (http://pandas.

pydata.org/pandas-docs/stable/install.html).

 A Module Repository for Windows
If you are working on Windows and prefer to manage your packages in order to always

have the most current modules, there is also a resource on the Internet where you can

download many third-party modules—Christoph Gohlke’s Python Extension Packages

for Windows repository (www.lfd.uci.edu/~gohlke/pythonlibs/). Each module is

supplied with the format archival WHL (wheel) in both 32-bit and 64-bit. To install each

module, you have to use the pip application (see PyPI in Chapter 2).

pip install SomePackege-1.0.whl

For example, for pandas you can find and download the following package:

pip install pandas-0.22.0-cp36-cp36m-win_amd64.whl

Chapter 4 the pandas Library—an introduCtion

https://github.com/pandas-dev/pandas:
http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
https://www.lfd.uci.edu/~gohlke/pythonlibs/

91

When choosing the module, be careful to choose the correct version for your version

of Python and the architecture on which you’re working. Furthermore, while NumPy

does not require the installation of other packages, on the contrary, pandas has many

dependencies. So make sure you get them all. The installation order is not important.

The disadvantage of this approach is that you need to install the packages

individually without a package manager that can help manage versioning and

interdependencies between the various packages. The advantage is greater mastery of

the modules and their versions, so you have the most current modules possible without

depending on the choices of the distributions.

 Testing Your pandas Installation
The pandas library can run a check after it’s installed to verify the internal controls (the

official documentation states that the test provides a 97% coverage of all the code inside).

First, make sure you have installed the nose module in your Python distribution (see

the “Nose Module” sidebar). If you did, you can start the test by entering the following

command:

nosetests pandas

The test will take several minutes and in the end it will show a list of any problems

encountered.

NOSE MODULE

this module is designed for testing python code during the development phases of a project

or a python module in particular. this module extends the capabilities of the unittest

module. the python module involved in testing the code, however, making its coding much

simpler and easier.

i suggest you read this article at http://pythontesting.net/framework/nose/nose-

introduction/ for more information.

Chapter 4 the pandas Library—an introduCtion

http://pythontesting.net/framework/nose/nose-introduction/
http://pythontesting.net/framework/nose/nose-introduction/

92

 Getting Started with pandas
The best way to get started with pandas is to open a Python shell and type commands

one by one. This way, you have the opportunity to become familiar with the individual

functions and data structures that are explained in this chapter.

Furthermore, the data and functions defined in the various examples remain valid

throughout the chapter, which means you don’t have to to define them each time. You

are invited, at the end of each example, to repeat the various commands, modify them

if appropriate, and control how the values in the data structures vary during operation.

This approach is great for getting familiar with the different topics covered in this

chapter, leaving you the opportunity to interact freely with what you are reading.

Note this chapter assumes that you have some familiarity with python and
numpy in general. if you have any difficulty, read Chapters 2 and 3 of this book.

First, open a session on the Python shell and then import the pandas library. The

general practice for importing the pandas module is as follows:

>>> import pandas as pd

>>> import numpy as np

Thus, in this chapter and throughout the book, every time you see pd and np, you’ll

make reference to an object or method referring to these two libraries, even though you

will often be tempted to import the pandas module in this way:

>>> from pandas import *

Thus, you no longer have to reference a function, object, or method with pd; this

approach is not considered good practice by the Python community in general.

 Introduction to pandas Data Structures
The heart of pandas is the two primary data structures on which all transactions, which

are generally made during the analysis of data, are centralized:

• Series

• Dataframes

Chapter 4 the pandas Library—an introduCtion

93

The series, as you will see, constitutes the data structure designed to accommodate a

sequence of one-dimensional data, while the dataframe, a more complex data structure,

is designed to contain cases with several dimensions.

Although these data structures are not the universal solution to all problems, they do

provide a valid and robust tool for most applications. In fact, they remain very simple to

understand and use. In addition, many cases of more complex data structures can still

be traced to these simple two cases.

However, their peculiarities are based on a particular feature—integration in their

structure of index objects and labels. You will see that this feature causes these data

structures to be easily manipulated.

 The Series
The series is the object of the pandas library designed to represent one-dimensional data

structures, similar to an array but with some additional features. Its internal structure is

simple (see Figure 4-1) and is composed of two arrays associated with each other. The

main array holds the data (data of any NumPy type) to which each element is associated

with a label, contained within the other array, called the index.

Figure 4-1. The structure of the series object

Chapter 4 the pandas Library—an introduCtion

94

 Declaring a Series

To create the series specified in Figure 4-1, you simply call the Series() constructor and

pass as an argument an array containing the values to be included in it.

>>> s = pd.Series([12,-4,7,9])

>>> s

0 12

1 -4

2 7

3 9

dtype: int64

As you can see from the output of the series, on the left there are the values in the

index, which is a series of labels, and on the right are the corresponding values.

If you do not specify any index during the definition of the series, by default,

pandas will assign numerical values increasing from 0 as labels. In this case, the labels

correspond to the indexes (position in the array) of the elements in the series object.

Often, however, it is preferable to create a series using meaningful labels in order to

distinguish and identify each item regardless of the order in which they were inserted

into the series.

In this case it will be necessary, during the constructor call, to include the index

option and assign an array of strings containing the labels.

>>> s = pd.Series([12,-4,7,9], index=['a','b','c','d'])

>>> s

a 12

b -4

c 7

d 9

dtype: int64

If you want to individually see the two arrays that make up this data structure, you

can call the two attributes of the series as follows: index and values.

>>> s.values

array([12, -4, 7, 9], dtype=int64)

>>> s.index

Index([u'a', u'b', u'c', u'd'], dtype='object')

Chapter 4 the pandas Library—an introduCtion

95

 Selecting the Internal Elements

You can select individual elements as ordinary numpy arrays, specifying the key.

>>> s[2]

7

Or you can specify the label corresponding to the position of the index.

>>> s['b']

-4

In the same way you select multiple items in a numpy array, you can specify the

following:

>>> s[0:2]

a 12

b -4

dtype: int64

In this case, you can use the corresponding labels, but specify the list of labels in an

array.

>>> s[['b','c']]

b -4

c 7

dtype: int64

 Assigning Values to the Elements

Now that you understand how to select individual elements, you also know how to

assign new values to them. In fact, you can select the value by index or by label.

>>> s[1] = 0

>>> s

a 12

b 0

c 7

d 9

dtype: int64

Chapter 4 the pandas Library—an introduCtion

96

>>> s['b'] = 1

>>> s

a 12

b 1

c 7

d 9

dtype: int64

 Defining a Series from NumPy Arrays and Other Series

You can define a new series starting with NumPy arrays or with an existing series.

>>> arr = np.array([1,2,3,4])

>>> s3 = pd.Series(arr)

>>> s3

0 1

1 2

2 3

3 4

dtype: int64

>>> s4 = pd.Series(s)

>>> s4

a 12

b 4

c 7

d 9

dtype: int64

Always keep in mind that the values contained in the NumPy array or in the

original series are not copied, but are passed by reference. That is, the object is inserted

dynamically within the new series object. If it changes, for example its internal element

varies in value, then those changes will also be present in the new series object.

>>> s3

0 1

1 2

2 3

3 4

Chapter 4 the pandas Library—an introduCtion

97

dtype: int64

>>> arr[2] = -2

>>> s3

0 1

1 2

2 -2

3 4

dtype: int64

As you can see in this example, by changing the third element of the arr array, we

also modified the corresponding element in the s3 series.

 Filtering Values

Thanks to the choice of the NumPy library as the base of the pandas library and, as a

result, for its data structures, many operations that are applicable to NumPy arrays are

extended to the series. One of these is filtering values contained in the data structure

through conditions.

For example, if you need to know which elements in the series are greater than 8, you

write the following:

>>> s[s > 8]

a 12

d 9

dtype: int64

 Operations and Mathematical Functions

Other operations such as operators (+, -, *, and /) and mathematical functions that are

applicable to NumPy array can be extended to series.

You can simply write the arithmetic expression for the operators.

>>> s / 2

a 6.0

b -2.0

c 3.5

d 4.5

dtype: float64

Chapter 4 the pandas Library—an introduCtion

98

However, with the NumPy mathematical functions, you must specify the function

referenced with np and the instance of the series passed as an argument.

>>> np.log(s)

a 2.484907

b 0.000000

c 1.945910

d 2.197225

dtype: float64

 Evaluating Vales

There are often duplicate values in a series. Then you may need to have more

information about the samples, including existence of any duplicates and whether a

certain value is present in the series.

In this regard, you can declare a series in which there are many duplicate values.

>>> serd = pd.Series([1,0,2,1,2,3], index=['white','white','blue','green','

green','yellow'])

>>> serd

white 1

white 0

blue 2

green 1

green 2

yellow 3

dtype: int64

To know all the values contained in the series, excluding duplicates, you can use

the unique() function. The return value is an array containing the unique values in the

series, although not necessarily in order.

>>> serd.unique()

array([1, 0, 2, 3], dtype=int64)

A function that’s similar to unique() is value_counts(), which not only returns

unique values but also calculates the occurrences within a series.

Chapter 4 the pandas Library—an introduCtion

99

>>> serd.value_counts()

2 2

1 2

3 1

0 1

dtype: int64

Finally, isin() evaluates the membership, that is, the given a list of values. This

function tells you if the values are contained in the data structure. Boolean values that are

returned can be very useful when filtering data in a series or in a column of a dataframe.

>>> serd.isin([0,3])

white False

white True

blue False

green False

green False

yellow True

dtype: bool

>>> serd[serd.isin([0,3])]

white 0

yellow 3

dtype: int64

 NaN Values

As you can see in the previous case, we tried to run the logarithm of a negative number

and received NaN as a result. This specific value NaN (Not a Number) is used in pandas

data structures to indicate the presence of an empty field or something that’s not

definable numerically.

Generally, these NaN values are a problem and must be managed in some way,

especially during data analysis. These data are often generated when extracting data

from a questionable source or when the source is missing data. Furthermore, as you

have just seen, the NaN values can also be generated in special cases, such as calculations

of logarithms of negative values, or exceptions during execution of some calculation

or function. In later chapters, you see how to apply different strategies to address the

problem of NaN values.

Chapter 4 the pandas Library—an introduCtion

100

Despite their problematic nature, however, pandas allows you to explicitly define

NaNs and add them to a data structure, such as a series. Within the array containing the

values, you enter np.NaN wherever you want to define a missing value.

>>> s2 = pd.Series([5,-3,np.NaN,14])

>>> s2

0 5.0

1 -3.0

2 NaN

3 14.0

dtype: float64

The isnull() and notnull() functions are very useful to identify the indexes

without a value.

>>> s2.isnull()

0 False

1 False

2 True

3 False

dtype: bool

>>> s2.notnull()

0 True

1 True

2 False

3 True

dtype: bool

In fact, these functions return two series with Boolean values that contain the True

and False values, depending on whether the item is a NaN value or less. The isnull()

function returns True at NaN values in the series; inversely, the notnull() function

returns True if they are not NaN. These functions are often placed inside filters to make a

condition.

>>> s2[s2.notnull()]

0 5.0

1 -3.0

3 14.0

Chapter 4 the pandas Library—an introduCtion

101

dtype: float64

>>> s2[s2.isnull()]

2 NaN

dtype: float64

 Series as Dictionaries

An alternative way to think of a series is to think of it as an object dict (dictionary). This

similarity is also exploited during the definition of an object series. In fact, you can create

a series from a previously defined dict.

>>> mydict = {'red': 2000, 'blue': 1000, 'yellow': 500,

 'orange': 1000}

>>> myseries = pd.Series(mydict)

>>> myseries

red 2000

blue 1000

yellow 500

orange 1000

dtype: int64

As you can see from this example, the array of the index is filled with the keys while

the data are filled with the corresponding values. You can also define the array indexes

separately. In this case, controlling correspondence between the keys of the dict and

labels array of indexes will run. If there is a mismatch, pandas will add the NaN value.

>>> colors = ['red','yellow','orange','blue','green']

>>> myseries = pd.Series(mydict, index=colors)

>>> myseries

red 2000.0

yellow 500.0

orange 1000.0

blue 1000.0

green NaN

dtype: float64

Chapter 4 the pandas Library—an introduCtion

102

 Operations Between Series

We have seen how to perform arithmetic operations between series and scalar values.

The same thing is possible by performing operations between two series, but in this case

even the labels come into play.

In fact, one of the great potentials of this type of data structures is that series can

align data addressed differently between them by identifying their corresponding labels.

In the following example, you add two series having only some elements in common

with the label.

>>> mydict2 = {'red':400,'yellow':1000,'black':700}

>>> myseries2 = pd.Series(mydict2)

>>> myseries + myseries2

black NaN

blue NaN

green NaN

orange NaN

red 2400.0

yellow 1500.0

dtype: float64

You get a new object series in which only the items with the same label are added.

All other labels present in one of the two series are still added to the result but have a NaN

value.

 The DataFrame
The dataframe is a tabular data structure very similar to a spreadsheet. This data

structure is designed to extend series to multiple dimensions. In fact, the dataframe

consists of an ordered collection of columns (see Figure 4-2), each of which can contain

a value of a different type (numeric, string, Boolean, etc.).

Chapter 4 the pandas Library—an introduCtion

103

Unlike series, which have an index array containing labels associated with each

element, the dataframe has two index arrays. The first index array, associated with

the lines, has very similar functions to the index array in series. In fact, each label is

associated with all the values in the row. The second array contains a series of labels,

each associated with a particular column.

A dataframe may also be understood as a dict of series, where the keys are the

column names and the values are the series that will form the columns of the dataframe.

Furthermore, all elements in each series are mapped according to an array of labels,

called the index.

 Defining a Dataframe

The most common way to create a new dataframe is precisely to pass a dict object to the

DataFrame() constructor. This dict object contains a key for each column that you want

to define, with an array of values for each of them.

>>> data = {'color' : ['blue','green','yellow','red','white'],

 'object' : ['ball','pen','pencil','paper','mug'],

 'price' : [1.2,1.0,0.6,0.9,1.7]}

>>> frame = pd.DataFrame(data)

>>> frame

 color object price

0 blue ball 1.2

1 green pen 1.0

Figure 4-2. The dataframe structure

Chapter 4 the pandas Library—an introduCtion

104

2 yellow pencil 0.6

3 red paper 0.9

4 white mug 1.7

If the dict object from which you want to create a dataframe contains more data

than you are interested in, you can make a selection. In the constructor of the dataframe,

you can specify a sequence of columns using the columns option. The columns will be

created in the order of the sequence regardless of how they are contained in the dict

object.

>>> frame2 = pd.DataFrame(data, columns=['object','price'])

>>> frame2

 object price

0 ball 1.2

1 pen 1.0

2 pencil 0.6

3 paper 0.9

4 mug 1.7

Even for dataframe objects, if the labels are not explicitly specified in the Index array,

pandas automatically assigns a numeric sequence starting from 0. Instead, if you want to

assign labels to the indexes of a dataframe, you have to use the index option and assign it

an array containing the labels.

>>> frame2 = pd.DataFrame(data, index=['one','two','three','four','five'])

>>> frame2

 color object price

one blue ball 1.2

two green pen 1.0

three yellow pencil 0.6

four red paper 0.9

five white mug 1.7

Now that we have introduced the two new options called index and columns, it is

easy to imagine an alternative way to define a dataframe. Instead of using a dict object,

you can define three arguments in the constructor, in the following order—a data matrix,

an array containing the labels assigned to the index option, and an array containing the

names of the columns assigned to the columns option.

Chapter 4 the pandas Library—an introduCtion

105

In many examples, as you will see from now on in this book, to create a matrix of

values quickly and easily, you can use np.arange(16).reshape((4,4)), which generates

a 4x4 matrix of numbers increasing from 0 to 15.

>>> frame3 = pd.DataFrame(np.arange(16).reshape((4,4)),

... index=['red','blue','yellow','white'],

... columns=['ball','pen','pencil','paper'])

>>> frame3

 ball pen pencil paper

red 0 1 2 3

blue 4 5 6 7

yellow 8 9 10 11

white 12 13 14 15

 Selecting Elements

If you want to know the name of all the columns of a dataframe, you can is specify the

columns attribute on the instance of the dataframe object.

>>> frame.columns

Index(['colors', 'object', 'price'], dtype='object')

Similarly, to get the list of indexes, you should specify the index attribute.

>>> frame.index

RangeIndex(start=0, stop=5, step=1)

You can also get the entire set of data contained within the data structure using the

values attribute.

>>> frame.values

array([['blue', 'ball', 1.2],

 ['green', 'pen', 1.0],

 ['yellow', 'pencil', 0.6],

 ['red', 'paper', 0.9],

 ['white', 'mug', 1.7]], dtype=object)

Chapter 4 the pandas Library—an introduCtion

106

Or, if you are interested in selecting only the contents of a column, you can write the

name of the column.

>>> frame['price']

0 1.2

1 1.0

2 0.6

3 0.9

4 1.7

Name: price, dtype: float64

As you can see, the return value is a series object. Another way to do this is to use the

column name as an attribute of the instance of the dataframe.

>>> frame.price

0 1.2

1 1.0

2 0.6

3 0.9

4 1.7

Name: price, dtype: float64

For rows within a dataframe, it is possible to use the loc attribute with the index

value of the row that you want to extract.

>>> frame.loc[2]

color yellow

object pencil

price 0.6

Name: 2, dtype: object

The object returned is again a series in which the names of the columns have

become the label of the array index, and the values have become the data of series.

To select multiple rows, you specify an array with the sequence of rows to insert:

>>> frame.loc[[2,4]]

 color object price

2 yellow pencil 0.6

4 white mug 1.7

Chapter 4 the pandas Library—an introduCtion

107

If you need to extract a portion of a DataFrame, selecting the lines that you want to

extract, you can use the reference numbers of the indexes. In fact, you can consider a

row as a portion of a dataframe that has the index of the row as the source (in the next 0)

value and the line above the one we want as a second value (in the next one).

>>> frame[0:1]

 color object price

0 blue ball 1.2

As you can see, the return value is an object dataframe containing a single row. If you

want more than one line, you must extend the selection range.

>>> frame[1:3]

 color object price

1 green pen 1.0

2 yellow pencil 0.6

Finally, if what you want to achieve is a single value within a dataframe, you first use

the name of the column and then the index or the label of the row.

>>> frame['object'][3]

'paper'

 Assigning Values

Once you understand how to access the various elements that make up a dataframe, you

follow the same logic to add or change the values in it.

For example, you have already seen that within the dataframe structure, an array

of indexes is specified by the index attribute, and the row containing the name of the

columns is specified with the columns attribute. Well, you can also assign a label, using

the name attribute, to these two substructures to identify them.

>>> frame.index.name = 'id'

>>> frame.columns.name = 'item'

>>> frame

Chapter 4 the pandas Library—an introduCtion

108

item color object price

id

0 blue ball 1.2

1 green pen 1.0

2 yellow pencil 0.6

3 red paper 0.9

4 white mug 1.7

One of the best features of the data structures of pandas is their high flexibility. In

fact, you can always intervene at any level to change the internal data structure. For

example, a very common operation is to add a new column.

You can do this by simply assigning a value to the instance of the dataframe and

specifying a new column name.

>>> frame['new'] = 12

>>> frame

 colors object price new

0 blue ball 1.2 12

1 green pen 1.0 12

2 yellow pencil 0.6 12

3 red paper 0.9 12

4 white mug 1.7 12

As you can see from this result, there is a new column called new with the value

within 12 replicated for each of its elements.

If, however, you want to update the contents of a column, you have to use an array.

>>> frame['new'] = [3.0,1.3,2.2,0.8,1.1]

>>> frame

 color object price new

0 blue ball 1.2 3.0

1 green pen 1.0 1.3

2 yellow pencil 0.6 2.2

3 red paper 0.9 0.8

4 white mug 1.7 1.1

You can follow a similar approach if you want to update an entire column, for

example, by using the np.arange() function to update the values of a column with a

predetermined sequence.

Chapter 4 the pandas Library—an introduCtion

109

The columns of a dataframe can also be created by assigning a series to one of them,

for example by specifying a series containing an increasing series of values through the

use of np.arange().

>>> ser = pd.Series(np.arange(5))

>>> ser

0 0

1 1

2 2

3 3

4 4

dtype: int64

>>> frame['new'] = ser

>>> frame

 color object price new

0 blue ball 1.2 0

1 green pen 1.0 1

2 yellow pencil 0.6 2

3 red paper 0.9 3

4 white mug 1.7 4

Finally, to change a single value, you simply select the item and give it the new value.

>>> frame['price'][2] = 3.3

 Membership of a Value

You have already seen the isin() function applied to the series to determine the

membership of a set of values. Well, this feature is also applicable to dataframe objects.

>>> frame.isin([1.0,'pen'])

 color object price new

0 False False False False

1 False True True True

2 False False False False

3 False False False False

4 False False False False

Chapter 4 the pandas Library—an introduCtion

110

You get a dataframe containing Boolean values, where True indicates values that

meet the membership. If you pass the value returned as a condition, then you’ll get a

new dataframe containing only the values that satisfy the condition.

>>> frame[frame.isin([1.0,'pen'])]

 color object price new

0 NaN NaN NaN NaN

1 NaN pen 1.0 1.0

2 NaN NaN NaN NaN

3 NaN NaN NaN NaN

4 NaN NaN NaN NaN

 Deleting a Column

If you want to delete an entire column and all its contents, use the del command.

>>> del frame['new']

>>> frame

 colors object price

0 blue ball 1.2

1 green pen 1.0

2 yellow pencil 3.3

3 red paper 0.9

4 white mug 1.7

 Filtering

Even when a dataframe, you can apply the filtering through the application of certain

conditions. For example, say you want to get all values smaller than a certain number, for

example 1.2.

>>> frame[frame < 1.2]

>>> frame

 colors object price

0 blue ball NaN

1 green pen 1.0

2 yellow pencil NaN

3 red paper 0.9

4 white mug NaN

Chapter 4 the pandas Library—an introduCtion

111

You will get a dataframe containing values less than 1.2, keeping their original

position. All others will be replaced with NaN.

 DataFrame from Nested dict

A very common data structure used in Python is a nested dict, as follows:

nestdict = { 'red': { 2012: 22, 2013: 33 },

 'white': { 2011: 13, 2012: 22, 2013: 16},

 'blue': {2011: 17, 2012: 27, 2013: 18}}

This data structure, when it is passed directly as an argument to the DataFrame()

constructor, will be interpreted by pandas to treat external keys as column names and

internal keys as labels for the indexes.

During the interpretation of the nested structure, it is possible that not all fields will

find a successful match. pandas compensates for this inconsistency by adding the NaN

value to missing values.

>>> nestdict = {'red':{2012: 22, 2013: 33},

... 'white':{2011: 13, 2012: 22, 2013: 16},

... 'blue': {2011: 17, 2012: 27, 2013: 18}}

>>> frame2 = pd.DataFrame(nestdict)

>>> frame2

 blue red white

2011 17 NaN 13

2012 27 22.0 22

2013 18 33.0 16

 Transposition of a Dataframe

An operation that you might need when you’re dealing with tabular data structures is

transposition (that is, columns become rows and rows become columns). pandas allows

you to do this in a very simple way. You can get the transposition of the dataframe by

adding the T attribute to its application.

>>> frame2.T

 2011 2012 2013

blue 17.0 27.0 18.0

red NaN 22.0 33.0

white 13.0 22.0 16.0

Chapter 4 the pandas Library—an introduCtion

112

 The Index Objects
Now that you know what the series and the dataframe are and how they are structured,

you can likely perceive the peculiarities of these data structures. Indeed, the majority of

their excellent characteristics are due to the presence of an Index object that’s integrated

in these data structures.

The Index objects are responsible for the labels on the axes and other metadata as

the name of the axes. You have already seen how an array containing labels is converted

into an Index object and that you need to specify the index option in the constructor.

>>> ser = pd.Series([5,0,3,8,4], index=['red','blue','yellow','white','green'])

>>> ser.index

Index(['red', 'blue', 'yellow', 'white', 'green'], dtype='object')

Unlike all the other elements in the pandas data structures (series and dataframe),

the Index objects are immutable. Once declared, they cannot be changed. This ensures

their secure sharing between the various data structures.

Each Index object has a number of methods and properties that are useful when you

need to know the values they contain.

 Methods on Index

There are some specific methods for indexes available to get some information about

indexes from a data structure. For example, idmin() and idmax() are two functions that

return, respectively, the index with the lowest value and the index with the highest value.

>>> ser.idxmin()

'blue'

>>> ser.idxmax()

'white'

 Index with Duplicate Labels

So far, you have met all cases in which indexes within a single data structure have a

unique label. Although many functions require this condition to run, this condition is

not mandatory on the data structures of pandas.

Chapter 4 the pandas Library—an introduCtion

113

Define by way of example, a series with some duplicate labels.

>>> serd = pd.Series(range(6), index=['white','white','blue','green',

'green','yellow'])

>>> serd

white 0

white 1

blue 2

green 3

green 4

yellow 5

dtype: int64

Regarding the selection of elements in a data structure, if there are more values in

correspondence of the same label, you will get a series in place of a single element.

>>> serd['white']

white 0

white 1

dtype: int64

The same logic applies to the dataframe, with duplicate indexes that will return the

dataframe.

With small data structures, it is easy to identify any duplicate indexes, but if the

structure becomes gradually larger, this starts to become difficult. In this respect, pandas

provides you with the is_unique attribute belonging to the Index objects. This attribute

will tell you if there are indexes with duplicate labels inside the structure data (both

series and dataframe).

>>> serd.index.is_unique

False

>>> frame.index.is_unique

True

Chapter 4 the pandas Library—an introduCtion

114

 Other Functionalities on Indexes
Compared to data structures commonly used with Python, you saw that pandas, as

well as taking advantage of the high-performance quality offered by NumPy arrays, has

chosen to integrate indexes in them.

This choice has proven somewhat successful. In fact, despite the enormous flexibility

given by the dynamic structures that already exist, using the internal reference to the

structure, such as that offered by the labels, allows developers who must perform

operations to carry them out in a simpler and more direct way.

This section analyzes in detail a number of basic features that take advantage of this

mechanism.

• Reindexing

• Dropping

• Alignment

 Reindexing
It was previously stated that once it’s declared in a data structure, the Index object

cannot be changed. This is true, but by executing a reindexing, you can also overcome

this problem.

In fact it is possible to obtain a new data structure from an existing one where

indexing rules can be defined again.

>>> ser = pd.Series([2,5,7,4], index=['one','two','three','four'])

>>> ser

one 2

two 5

three 7

four 4

dtype: int64

In order to reindex this series, pandas provides you with the reindex() function.

This function creates a new series object with the values of the previous series

rearranged according to the new sequence of labels.

Chapter 4 the pandas Library—an introduCtion

115

During reindexing, it is possible to change the order of the sequence of indexes,

delete some of them, or add new ones. In the case of a new label, pandas adds NaN as the

corresponding value.

>>> ser.reindex(['three','four','five','one'])

three 7.0

four 4.0

five NaN

one 2.0

dtype: float64

As you can see from the value returned, the order of the labels has been completely

rearranged. The value corresponding to the label two has been dropped and a new label

called five is present in the series.

However, to measure the reindexing process, defining the list of the labels can be

awkward, especially with a large dataframe. So you could use some method that allows

you to fill in or interpolate values automatically.

To better understand the functioning of this mode of automatic reindexing, define

the following series.

>>> ser3 = pd.Series([1,5,6,3],index=[0,3,5,6])

>>> ser3

0 1

3 5

5 6

6 3

dtype: int64

As you can see in this example, the index column is not a perfect sequence of

numbers; in fact there are some missing values (1, 2, and 4). A common need would

be to perform interpolation in order to obtain the complete sequence of numbers. To

achieve this, you will use reindexing with the method option set to ffill. Moreover, you

need to set a range of values for indexes. In this case, to specify a set of values between 0

and 5, you can use range(6) as an argument.

>>> ser3.reindex(range(6),method='ffill')

0 1

1 1

Chapter 4 the pandas Library—an introduCtion

116

2 1

3 5

4 5

5 6

dtype: int64

As you can see from the result, the indexes that were not present in the original series

were added. By interpolation, those with the lowest index in the original series have

been assigned as values. In fact, the indexes 1 and 2 have the value 1, which belongs to

index 0.

If you want this index value to be assigned during the interpolation, you have to use

the bfill method.

>>> ser3.reindex(range(6),method='bfill')

0 1

1 5

2 5

3 5

4 6

5 6

dtype: int64

In this case, the value assigned to the indexes 1 and 2 is the value 5, which belongs

to index 3.

Extending the concepts of reindexing with series to the dataframe, you can have a

rearrangement not only for indexes (rows), but also with regard to the columns, or even

both. As previously mentioned, adding a new column or index is possible, but since

there are missing values in the original data structure, pandas adds NaN values to them.

>>> frame.reindex(range(5), method='ffill',columns=['colors','price','new',

'object'])

 colors price new object

0 blue 1.2 blue ball

1 green 1.0 green pen

2 yellow 3.3 yellow pencil

3 red 0.9 red paper

4 white 1.7 white mug

Chapter 4 the pandas Library—an introduCtion

117

 Dropping
Another operation that is connected to Index objects is dropping. Deleting a row or a

column becomes simple, due to the labels used to indicate the indexes and column names.

Also in this case, pandas provides a specific function for this operation, called

drop(). This method will return a new object without the items that you want to delete.

For example, take the case where we want to remove a single item from a series. To

do this, define a generic series of four elements with four distinct labels.

>>> ser = pd.Series(np.arange(4.), index=['red','blue','yellow','white'])

>>> ser

red 0.0

blue 1.0

yellow 2.0

white 3.0

dtype: float64

Now say, for example, that you want to delete the item corresponding to the label

yellow. Simply specify the label as an argument of the function drop() to delete it.

>>> ser.drop('yellow')

red 0.0

blue 1.0

white 3.0

dtype: float64

To remove more items, just pass an array with the corresponding labels.

>>> ser.drop(['blue','white'])

red 0.0

yellow 2.0

dtype: float64

Regarding the dataframe instead, the values can be deleted by referring to the labels

of both axes. Declare the following frame by way of example.

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),

... index=['red','blue','yellow','white'],

... columns=['ball','pen','pencil','paper'])

Chapter 4 the pandas Library—an introduCtion

118

>>> frame

 ball pen pencil paper

red 0 1 2 3

blue 4 5 6 7

yellow 8 9 10 11

white 12 13 14 15

To delete rows, you just pass the indexes of the rows.

>>> frame.drop(['blue','yellow'])

 ball pen pencil paper

red 0 1 2 3

white 12 13 14 15

To delete columns, you always need to specify the indexes of the columns, but you

must specify the axis from which to delete the elements, and this can be done using the

axis option. So to refer to the column names, you should specify axis = 1.

>>> frame.drop(['pen','pencil'],axis=1)

 ball paper

red 0 3

blue 4 7

yellow 8 11

white 12 15

 Arithmetic and Data Alignment
Perhaps the most powerful feature involving the indexes in a data structure, is that

pandas can align indexes coming from two different data structures. This is especially

true when you are performing an arithmetic operation on them. In fact, during these

operations, not only can the indexes between the two structures be in a different order,

but they also can be present in only one of the two structures.

As you can see from the examples that follow, pandas proves to be very powerful in

aligning indexes during these operations. For example, you can start considering two

series in which they are defined, respectively, two arrays of labels not perfectly matching

each other.

>>> s1 = pd.Series([3,2,5,1],['white','yellow','green','blue'])

>>> s2 = pd.Series([1,4,7,2,1],['white','yellow','black','blue','brown'])

Chapter 4 the pandas Library—an introduCtion

119

Now among the various arithmetic operations, consider the simple sum. As you can

see from the two series just declared, some labels are present in both, while other labels

are present only in one of the two. When the labels are present in both operators, their

values will be added, while in the opposite case, they will also be shown in the result

(new series), but with the value NaN.

>>> s1 + s2

black NaN

blue 3.0

brown NaN

green NaN

white 4.0

yellow 6.0

dtype: float64

In the case of the dataframe, although it may appear more complex, the alignment

follows the same principle, but is carried out both for the rows and for the columns.

>>> frame1 = pd.DataFrame(np.arange(16).reshape((4,4)),

... index=['red','blue','yellow','white'],

... columns=['ball','pen','pencil','paper'])

>>> frame2 = pd.DataFrame(np.arange(12).reshape((4,3)),

... index=['blue','green','white','yellow'],

... columns=['mug','pen','ball'])

>>> frame1

 ball pen pencil paper

red 0 1 2 3

blue 4 5 6 7

yellow 8 9 10 11

white 12 13 14 15

>>> frame2

 mug pen ball

blue 0 1 2

green 3 4 5

white 6 7 8

yellow 9 10 11

Chapter 4 the pandas Library—an introduCtion

120

>>> frame1 + frame2

 ball mug paper pen pencil

blue 6.0 NaN NaN 6.0 NaN

green NaN NaN NaN NaN NaN

red NaN NaN NaN NaN NaN

white 20.0 NaN NaN 20.0 NaN

yellow 19.0 NaN NaN 19.0 NaN

 Operations Between Data Structures
Now that you are familiar with the data structures such as series and dataframe and you

have seen how various elementary operations can be performed on them, it’s time to go

to operations involving two or more of these structures.

For example, in the previous section, you saw how the arithmetic operators apply

between two of these objects. Now in this section you will deepen more the topic of

operations that can be performed between two data structures.

 Flexible Arithmetic Methods
You’ve just seen how to use mathematical operators directly on the pandas data

structures. The same operations can also be performed using appropriate methods,

called flexible arithmetic methods.

• add()

• sub()

• div()

• mul()

In order to call these functions, you need to use a specification different than what

you’re used to dealing with mathematical operators. For example, instead of writing a sum

between two dataframes, such as frame1 + frame2, you have to use the following format:

>>> frame1.add(frame2)

 ball mug paper pen pencil

blue 6.0 NaN NaN 6.0 NaN

green NaN NaN NaN NaN NaN

Chapter 4 the pandas Library—an introduCtion

121

red NaN NaN NaN NaN NaN

white 20.0 NaN NaN 20.0 NaN

yellow 19.0 NaN NaN 19.0 NaN

As you can see, the results are the same as what you’d get using the addition operator +.

You can also note that if the indexes and column names differ greatly from one series to

another, you’ll find yourself with a new dataframe full of NaN values. You’ll see later in

this chapter how to handle this kind of data.

 Operations Between DataFrame and Series
Coming back to the arithmetic operators, pandas allows you to make transactions

between different structures. For example, between a dataframe and a series. For

example, you can define these two structures in the following way.

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),

... index=['red','blue','yellow','white'],

... columns=['ball','pen','pencil','paper'])

>>> frame

 ball pen pencil paper

red 0 1 2 3

blue 4 5 6 7

yellow 8 9 10 11

white 12 13 14 15

>>> ser = pd.Series(np.arange(4), index=['ball','pen','pencil','paper'])

>>> ser

ball 0

pen 1

pencil 2

paper 3

dtype: int64

The two newly defined data structures have been created specifically so that the

indexes of series match the names of the columns of the dataframe. This way, you can

apply a direct operation.

Chapter 4 the pandas Library—an introduCtion

122

>>> frame - ser

 ball pen pencil paper

red 0 0 0 0

blue 4 4 4 4

yellow 8 8 8 8

white 12 12 12 12

As you can see, the elements of the series are subtracted from the values of the

dataframe corresponding to the same index on the column. The value is subtracted for

all values of the column, regardless of their index.

If an index is not present in one of the two data structures, the result will be a new

column with that index only that all its elements will be NaN.

>>> ser['mug'] = 9

>>> ser

ball 0

pen 1

pencil 2

paper 3

mug 9

dtype: int64

>>> frame - ser

 ball mug paper pen pencil

red 0 NaN 0 0 0

blue 4 NaN 4 4 4

yellow 8 NaN 8 8 8

white 12 NaN 12 12 12

 Function Application and Mapping
This section covers the pandas library functions.

Chapter 4 the pandas Library—an introduCtion

123

 Functions by Element
The pandas library is built on the foundations of NumPy and then extends many of its

features by adapting them to new data structures as series and dataframe. Among these

are the universal functions, called ufunc. This class of functions operates by element in

the data structure.

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),

... index=['red','blue','yellow','white'],

... columns=['ball','pen','pencil','paper'])

>>> frame

 ball pen pencil paper

red 0 1 2 3

blue 4 5 6 7

yellow 8 9 10 11

white 12 13 14 15

For example, you could calculate the square root of each value in the dataframe

using the NumPy np.sqrt().

>>> np.sqrt(frame)

 ball pen pencil paper

red 0.000000 1.000000 1.414214 1.732051

blue 2.000000 2.236068 2.449490 2.645751

yellow 2.828427 3.000000 3.162278 3.316625

white 3.464102 3.605551 3.741657 3.872983

 Functions by Row or Column
The application of the functions is not limited to the ufunc functions, but also includes

those defined by the user. The important point is that they operate on a one-dimensional

array, giving a single number as a result. For example, you can define a lambda function

that calculates the range covered by the elements in an array.

>>> f = lambda x: x.max() - x.min()

Chapter 4 the pandas Library—an introduCtion

124

It is possible to define the function this way as well:

>>> def f(x):

... return x.max() - x.min()

...

Using the apply() function, you can apply the function just defined on the dataframe.

>>> frame.apply(f)

ball 12

pen 12

pencil 12

paper 12

dtype: int64

The result this time is one value for the column, but if you prefer to apply the

function by row instead of by column, you have to set the axis option to 1.

>>> frame.apply(f, axis=1)

red 3

blue 3

yellow 3

white 3

dtype: int64

It is not mandatory that the method apply() return a scalar value. It can also

return a series. A useful case would be to extend the application to many functions

simultaneously. In this case, we will have two or more values for each feature applied.

This can be done by defining a function in the following manner:

>>> def f(x):

... return pd.Series([x.min(), x.max()], index=['min','max'])

...

Then, you apply the function as before. But in this case as an object returned you

get a dataframe instead of a series, in which there will be as many rows as the values

returned by the function.

Chapter 4 the pandas Library—an introduCtion

125

>>> frame.apply(f)

 ball pen pencil paper

min 0 1 2 3

max 12 13 14 15

 Statistics Functions
Most of the statistical functions for arrays are still valid for dataframe, so using the

apply() function is no longer necessary. For example, functions such as sum() and

mean() can calculate the sum and the average, respectively, of the elements contained

within a dataframe.

>>> frame.sum()

ball 24

pen 28

pencil 32

paper 36

dtype: int64

>>> frame.mean()

ball 6.0

pen 7.0

pencil 8.0

paper 9.0

dtype: float64

There is also a function called describe() that allows you to obtain summary

statistics at once.

>>> frame.describe()

 ball pen pencil paper

count 4.000000 4.000000 4.000000 4.000000

mean 6.000000 7.000000 8.000000 9.000000

std 5.163978 5.163978 5.163978 5.163978

min 0.000000 1.000000 2.000000 3.000000

25% 3.000000 4.000000 5.000000 6.000000

50% 6.000000 7.000000 8.000000 9.000000

75% 9.000000 10.000000 11.000000 12.000000

max 12.000000 13.000000 14.000000 15.000000

Chapter 4 the pandas Library—an introduCtion

126

 Sorting and Ranking
Another fundamental operation that uses indexing is sorting. Sorting the data is often

a necessity and it is very important to be able to do it easily. pandas provides the sort_

index() function, which returns a new object that’s identical to the start, but in which

the elements are ordered.

Let’s start by seeing how you can sort items in a series. The operation is quite trivial

since the list of indexes to be ordered is only one.

>>> ser = pd.Series([5,0,3,8,4],

... index=['red','blue','yellow','white','green'])

>>> ser

red 5

blue 0

yellow 3

white 8

green 4

dtype: int64

>>> ser.sort_index()

blue 0

green 4

red 5

white 8

yellow 3

dtype: int64

As you can see, the items were sorted in ascending alphabetical order based on their

labels (from A to Z). This is the default behavior, but you can set the opposite order by

setting the ascending option to False.

>>> ser.sort_index(ascending=False)

yellow 3

white 8

red 5

green 4

blue 0

dtype: int64

Chapter 4 the pandas Library—an introduCtion

127

With the dataframe, the sorting can be performed independently on each of its two

axes. So if you want to order by row following the indexes, you just continue to use the

sort_index() function without arguments as you’ve seen before, or if you prefer to order

by columns, you need to set the axis options to 1.

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),

... index=['red','blue','yellow','white'],

... columns=['ball','pen','pencil','paper'])

>>> frame

 ball pen pencil paper

red 0 1 2 3

blue 4 5 6 7

yellow 8 9 10 11

white 12 13 14 15

>>> frame.sort_index()

 ball pen pencil paper

blue 4 5 6 7

red 0 1 2 3

white 12 13 14 15

yellow 8 9 10 11

>>> frame.sort_index(axis=1)

 ball paper pen pencil

red 0 3 1 2

blue 4 7 5 6

yellow 8 11 9 10

white 12 15 13 14

So far, you have learned how to sort the values according to the indexes. But very

often you may need to sort the values contained in the data structure. In this case, you

have to differentiate depending on whether you have to sort the values of a series or a

dataframe.

If you want to order the series, you need to use the sort_values() function.

>>> ser.sort_values()

blue 0

yellow 3

green 4

Chapter 4 the pandas Library—an introduCtion

128

red 5

white 8

dtype: int64

If you need to order the values in a dataframe, use the sort_values() function seen

previously but with the by option. Then you have to specify the name of the column on

which to sort.

>>> frame.sort_values(by='pen')

 ball pen pencil paper

red 0 1 2 3

blue 4 5 6 7

yellow 8 9 10 11

white 12 13 14 15

If the sorting criteria will be based on two or more columns, you can assign an array

containing the names of the columns to the by option.

>>> frame.sort_values(by=['pen','pencil'])

 ball pen pencil paper

red 0 1 2 3

blue 4 5 6 7

yellow 8 9 10 11

white 12 13 14 15

The ranking is an operation closely related to sorting. It mainly consists of assigning

a rank (that is, a value that starts at 0 and then increase gradually) to each element of the

series. The rank will be assigned starting from the lowest value to the highest.

>>> ser.rank()

red 4.0

blue 1.0

yellow 2.0

white 5.0

green 3.0

dtype: float64

Chapter 4 the pandas Library—an introduCtion

129

The rank can also be assigned in the order in which the data are already in the data

structure (without a sorting operation). In this case, you just add the method option with

the first value assigned.

>>> ser.rank(method='first')

red 4.0

blue 1.0

yellow 2.0

white 5.0

green 3.0

dtype: float64

By default, even the ranking follows an ascending sort. To reverse this criteria, set the

ascending option to False.

>>> ser.rank(ascending=False)

red 2.0

blue 5.0

yellow 4.0

white 1.0

green 3.0

dtype: float64

 Correlation and Covariance
Two important statistical calculations are correlation and covariance, expressed in

pandas by the corr() and cov() functions. These kind of calculations normally involve

two series.

>>> seq2 = pd.Series([3,4,3,4,5,4,3,2],['2006','2007','2008',

'2009','2010','2011','2012','2013'])

>>> seq = pd.Series([1,2,3,4,4,3,2,1],['2006','2007','2008',

'2009','2010','2011','2012','2013'])

>>> seq.corr(seq2)

0.7745966692414835

>>> seq.cov(seq2)

0.8571428571428571

Chapter 4 the pandas Library—an introduCtion

130

Covariance and correlation can also be applied to a single dataframe. In this case,

they return their corresponding matrices in the form of two new dataframe objects.

>>> frame2 = pd.DataFrame([[1,4,3,6],[4,5,6,1],[3,3,1,5],[4,1,6,4]],

... index=['red','blue','yellow','white'],

... columns=['ball','pen','pencil','paper'])

>>> frame2

 ball pen pencil paper

red 1 4 3 6

blue 4 5 6 1

yellow 3 3 1 5

white 4 1 6 4

>>> frame2.corr()

 ball pen pencil paper

ball 1.000000 -0.276026 0.577350 -0.763763

pen -0.276026 1.000000 -0.079682 -0.361403

pencil 0.577350 -0.079682 1.000000 -0.692935

paper -0.763763 -0.361403 -0.692935 1.000000

>>> frame2.cov()

 ball pen pencil paper

ball 2.000000 -0.666667 2.000000 -2.333333

pen -0.666667 2.916667 -0.333333 -1.333333

pencil 2.000000 -0.333333 6.000000 -3.666667

paper -2.333333 -1.333333 -3.666667 4.666667

Using the corrwith() method, you can calculate the pairwise correlations between

the columns or rows of a dataframe with a series or another DataFrame().

>>> ser = pd.Series([0,1,2,3,9],

... index=['red','blue','yellow','white','green'])

>>> ser

red 0

blue 1

yellow 2

white 3

green 9

dtype: int64

Chapter 4 the pandas Library—an introduCtion

131

>>> frame2.corrwith(ser)

ball 0.730297

pen -0.831522

pencil 0.210819

paper -0.119523

dtype: float64

>>> frame2.corrwith(frame)

ball 0.730297

pen -0.831522

pencil 0.210819

paper -0.119523

dtype: float64

 “Not a Number” Data
In the previous sections, you saw how easily missing data can be formed. They are

recognizable in the data structures by the NaN (Not a Number) value. So, having values

that are not defined in a data structure is quite common in data analysis.

However, pandas is designed to better manage this eventuality. In fact, in this

section, you will learn how to treat these values so that many issues can be obviated.

For example, in the pandas library, calculating descriptive statistics excludes NaN values

implicitly.

 Assigning a NaN Value
If you need to specifically assign a NaN value to an element in a data structure, you can

use the np.NaN (or np.nan) value of the NumPy library.

>>> ser = pd.Series([0,1,2,np.NaN,9],

... index=['red','blue','yellow','white','green'])

>>> ser

red 0.0

blue 1.0

yellow 2.0

white NaN

green 9.0

Chapter 4 the pandas Library—an introduCtion

132

dtype: float64

>>> ser['white'] = None

>>> ser

red 0.0

blue 1.0

yellow 2.0

white NaN

green 9.0

dtype: float64

 Filtering Out NaN Values
There are various ways to eliminate the NaN values during data analysis. Eliminating them

by hand, element by element, can be very tedious and risky, and you’re never sure that

you eliminated all the NaN values. This is where the dropna() function comes to your aid.

>>> ser.dropna()

red 0.0

blue 1.0

yellow 2.0

green 9.0

dtype: float64

You can also directly perform the filtering function by placing notnull() in the

selection condition.

>>> ser[ser.notnull()]

red 0.0

blue 1.0

yellow 2.0

green 9.0

dtype: float64

If you’re dealing with a dataframe, it gets a little more complex. If you use the

dropna() function on this type of object, and there is only one NaN value on a column or

row, it will eliminate it.

Chapter 4 the pandas Library—an introduCtion

133

>>> frame3 = pd.DataFrame([[6,np.nan,6],[np.nan,np.nan,np.nan],[2,np.nan,5]],

... index = ['blue','green','red'],

... columns = ['ball','mug','pen'])

>>> frame3

 ball mug pen

blue 6.0 NaN 6.0

green NaN NaN NaN

red 2.0 NaN 5.0

>>> frame3.dropna()

Empty DataFrame

Columns: [ball, mug, pen]

Index: []

Therefore, to avoid having entire rows and columns disappear completely, you

should specify the how option, assigning a value of all to it. This tells the dropna()

function to delete only the rows or columns in which all elements are NaN.

>>> frame3.dropna(how='all')

 ball mug pen

blue 6.0 NaN 6.0

red 2.0 NaN 5.0

 Filling in NaN Occurrences
Rather than filter NaN values within data structures, with the risk of discarding them

along with values that could be relevant in the context of data analysis, you can replace

them with other numbers. For most purposes, the fillna() function is a great choice.

This method takes one argument, the value with which to replace any NaN. It can be the

same for all cases.

>>> frame3.fillna(0)

 ball mug pen

blue 6.0 0.0 6.0

green 0.0 0.0 0.0

red 2.0 0.0 5.0

Chapter 4 the pandas Library—an introduCtion

134

Or you can replace NaN with different values depending on the column, specifying

one by one the indexes and the associated values.

>>> frame3.fillna({'ball':1,'mug':0,'pen':99})

 ball mug pen

blue 6.0 0.0 6.0

green 1.0 0.0 99.0

red 2.0 0.0 5.0

 Hierarchical Indexing and Leveling
Hierarchical indexing is a very important feature of pandas, as it allows you to have

multiple levels of indexes on a single axis. It gives you a way to work with data in multiple

dimensions while continuing to work in a two-dimensional structure.

Let’s start with a simple example, creating a series containing two arrays of indexes,

that is, creating a structure with two levels.

>>> mser = pd.Series(np.random.rand(8),

... index=[['white','white','white','blue','blue','red','red',

 'red'],

... ['up','down','right','up','down','up','down','left']])

>>> mser

white up 0.461689

 down 0.643121

 right 0.956163

blue up 0.728021

 down 0.813079

red up 0.536433

 down 0.606161

 left 0.996686

dtype: float64

>>> mser.index

Pd.MultiIndex(levels=[['blue', 'red', 'white'], ['down',

'left', 'right', 'up']],

... labels=[[2, 2, 2, 0, 0, 1, 1, 1],

 [3, 0, 2, 3, 0, 3, 0, 1]])

Chapter 4 the pandas Library—an introduCtion

135

Through the specification of hierarchical indexing, selecting subsets of values is in a

certain way simplified.

In fact, you can select the values for a given value of the first index, and you do it in

the classic way:

>>> mser['white']

up 0.461689

down 0.643121

right 0.956163

dtype: float64

Or you can select values for a given value of the second index, in the following

manner:

>>> mser[:,'up']

white 0.461689

blue 0.728021

red 0.536433

dtype: float64

Intuitively, if you want to select a specific value, you specify both indexes.

>>> mser['white','up']

0.46168915430531676

Hierarchical indexing plays a critical role in reshaping data and group-based

operations such as a pivot-table. For example, the data could be rearranged and used

in a dataframe with a special function called unstack(). This function converts the

series with a hierarchical index to a simple dataframe, where the second set of indexes is

converted into a new set of columns.

>>> mser.unstack()

 down left right up

blue 0.813079 NaN NaN 0.728021

red 0.606161 0.996686 NaN 0.536433

white 0.643121 NaN 0.956163 0.461689

Chapter 4 the pandas Library—an introduCtion

136

If what you want is to perform the reverse operation, which is to convert a dataframe

to a series, you use the stack() function.

>>> frame

 ball pen pencil paper

red 0 1 2 3

blue 4 5 6 7

yellow 8 9 10 11

white 12 13 14 15

>>> frame.stack()

red ball 0

 pen 1

 pencil 2

 paper 3

blue ball 4

 pen 5

 pencil 6

 paper 7

yellow ball 8

 pen 9

 pencil 10

 paper 11

white ball 12

 pen 13

 pencil 14

 paper 15

dtype: int64

With dataframe, it is possible to define a hierarchical index both for the rows and for

the columns. At the time the dataframe is declared, you have to define an array of arrays

for the index and columns options.

>>> mframe = pd.DataFrame(np.random.randn(16).reshape(4,4),

... index=[['white','white','red','red'], ['up','down','up','down']],

... columns=[['pen','pen','paper','paper'],[1,2,1,2]])

Chapter 4 the pandas Library—an introduCtion

137

>>> mframe

 pen paper

 1 2 1 2

white up -1.964055 1.312100 -0.914750 -0.941930

 down -1.886825 1.700858 -1.060846 -0.197669

red up -1.561761 1.225509 -0.244772 0.345843

 down 2.668155 0.528971 -1.633708 0.921735

 Reordering and Sorting Levels
Occasionally, you might need to rearrange the order of the levels on an axis or sort for

values at a specific level.

The swaplevel() function accepts as arguments the names assigned to the two

levels that you want to interchange and returns a new object with the two levels

interchanged between them, while leaving the data unmodified.

>>> mframe.columns.names = ['objects','id']

>>> mframe.index.names = ['colors','status']

>>> mframe

objects pen paper

id 1 2 1 2

colors status

white up -1.964055 1.312100 -0.914750 -0.941930

 down -1.886825 1.700858 -1.060846 -0.197669

red up -1.561761 1.225509 -0.244772 0.345843

 down 2.668155 0.528971 -1.633708 0.921735

>>> mframe.swaplevel('colors','status')

objects pen paper

id 1 2 1 2

status colors

up white -1.964055 1.312100 -0.914750 -0.941930

down white -1.886825 1.700858 -1.060846 -0.197669

up red -1.561761 1.225509 -0.244772 0.345843

down red 2.668155 0.528971 -1.633708 0.921735

Chapter 4 the pandas Library—an introduCtion

138

Instead, the sort_index() function orders the data considering only those

of a certain level by specifying it as parameter

>>> mframe.sort_index(level='colors')

objects pen paper

id 1 2 1 2

colors status

red down 2.668155 0.528971 -1.633708 0.921735

 up -1.561761 1.225509 -0.244772 0.345843

white down -1.886825 1.700858 -1.060846 -0.197669

 up -1.964055 1.312100 -0.914750 -0.941930

 Summary Statistic by Level
Many descriptive statistics and summary statistics performed on a dataframe or on a

series have a level option, with which you can determine at what level the descriptive

and summary statistics should be determined.

For example, if you create a statistic at row level, you have to simply specify the level

option with the level name.

 >>> mframe.sum(level='colors')

objects pen paper

id 1 2 1 2

colors

red 1.106394 1.754480 -1.878480 1.267578

white -3.850881 3.012959 -1.975596 -1.139599

If you want to create a statistic for a given level of the column, for example, the id,

you must specify the second axis as an argument through the axis option set to 1.

>>> mframe.sum(level='id', axis=1)

id 1 2

colors status

white up -2.878806 0.370170

 down -2.947672 1.503189

red up -1.806532 1.571352

 down 1.034447 1.450706

Chapter 4 the pandas Library—an introduCtion

139

 Conclusions
This chapter introduced the pandas library. You learned how to install it and saw a

general overview of its characteristics.

You learned about the two basic structures data, called the series and dataframe,

along with their operation and their main characteristics. Especially, you discovered

the importance of indexing within these structures and how best to perform operations

on them. Finally, you looked at the possibility of extending the complexity of these

structures by creating hierarchies of indexes, thus distributing the data contained in

them into different sublevels.

In the next chapter, you learn how to capture data from external sources such as files,

and inversely, how to write the analysis results on them.

Chapter 4 the pandas Library—an introduCtion

141
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_5

CHAPTER 5

pandas: Reading
and Writing Data
In the previous chapter, you became familiar with the pandas library and with the

basic functionalities that it provides for data analysis. You saw that dataframe and

series are the heart of this library. These are the material on which to perform all data

manipulations, calculations, and analysis.

In this chapter, you will see all of the tools provided by pandas for reading data stored

in many types of media (such as files and databases). In parallel, you will also see how

to write data structures directly on these formats, without worrying too much about the

technologies used.

This chapter focuses on a series of I/O API functions that pandas provides to read

and write data directly as dataframe objects. We start by looking at text files, then move

gradually to more complex binary formats.

At the end of the chapter, you’ll also learn how to interface with all common

databases, both SQL and NoSQL, including examples that show how to store data in a

dataframe. At the same time, you learn how to read data contained in a database and

retrieve them as a dataframe.

 I/O API Tools
pandas is a library specialized for data analysis, so you expect that it is mainly focused

on calculation and data processing. The processes of writing and reading data from/to

external files can be considered part of data processing. In fact, you will see how, even at

this stage, you can perform some operations in order to prepare the incoming data for

manipulation.

142

Thus, this step is very important for data analysis and therefore a specific tool for this

purpose must be present in the library pandas—a set of functions called I/O API. These

functions are divided into two main categories: readers and writers.

Readers Writers

read_csv to_csv

read_excel to_excel

read_hdf to_hdf

read_sql to_sql

read_json to_json

read_html to_html

read_stata to_stata

read_clipboard to_clipboard

read_pickle to_pickle

read_msgpack to_msgpack (experimental)

read_gbq to_gbq (experimental)

 CSV and Textual Files
Everyone has become accustomed over the years to writing and reading files in text

form. In particular, data are generally reported in tabular form. If the values in a row are

separated by commas, you have the CSV (comma-separated values) format, which is

perhaps the best-known and most popular format.

Other forms of tabular data can be separated by spaces or tabs and are typically

contained in text files of various types (generally with the .txt extension).

This type of file is the most common source of data and is easier to transcribe and

interpret. In this regard, pandas provides a set of functions specific for this type of file.

• read_csv

• read_table

• to_csv

Chapter 5 pandas: reading and Writing data

143

 Reading Data in CSV or Text Files
From experience, the most common operation of a person approaching data analysis is

to read the data contained in a CSV file, or at least in a text file.

But before you start dealing with files, you need to import the following libraries.

>>> import numpy as np

>>> import pandas as pd

In order to see how pandas handles this kind of data, we’ll start by creating a small

CSV file in the working directory, as shown in Listing 5-1, and save it as ch05_01.csv.

Listing 5-1. ch05_01.csv

white,red,blue,green,animal

1,5,2,3,cat

2,7,8,5,dog

3,3,6,7,horse

2,2,8,3,duck

4,4,2,1,mouse

Since this file is comma-delimited, you can use the read_csv() function to read its

content and convert it to a dataframe object.

>>> csvframe = pd.read_csv('ch05_01.csv')

>>> csvframe

 white red blue green animal

0 1 5 2 3 cat

1 2 7 8 5 dog

2 3 3 6 7 horse

3 2 2 8 3 duck

4 4 4 2 1 mouse

As you can see, reading the data in a CSV file is rather trivial. CSV files are tabulated

data in which the values on the same column are separated by commas. Since CSV files

are considered text files, you can also use the read_table() function, but specify the

delimiter.

Chapter 5 pandas: reading and Writing data

144

>>> pd.read_table('ch05_01.csv',sep=',')

 white red blue green animal

0 1 5 2 3 cat

1 2 7 8 5 dog

2 3 3 6 7 horse

3 2 2 8 3 duck

4 4 4 2 1 mouse

In this example, you can see that in the CSV file, headers that identify all the columns

are in the first row. But this is not a general case; it often happens that the tabulated data

begin directly in the first line (see Listing 5-2).

Listing 5-2. ch05_02.csv

1,5,2,3,cat

2,7,8,5,dog

3,3,6,7,horse

2,2,8,3,duck

4,4,2,1,mouse

>>> pd.read_csv('ch05_02.csv')

 1 5 2 3 cat

0 2 7 8 5 dog

1 3 3 6 7 horse

2 2 2 8 3 duck

3 4 4 2 1 mouse

In this case, you could make sure that it is pandas that assigns the default names to

the columns by setting the header option to None.

>>> pd.read_csv('ch05_02.csv', header=None)

 0 1 2 3 4

0 1 5 2 3 cat

1 2 7 8 5 dog

2 3 3 6 7 horse

3 2 2 8 3 duck

4 4 4 2 1 mouse

Chapter 5 pandas: reading and Writing data

145

In addition, you can specify the names directly by assigning a list of labels to the

names option.

>>> pd.read_csv('ch05_02.csv', names=['white','red','blue','green','animal'])

 white red blue green animal

0 1 5 2 3 cat

1 2 7 8 5 dog

2 3 3 6 7 horse

3 2 2 8 3 duck

4 4 4 2 1 mouse

In more complex cases, in which you want to create a dataframe with a hierarchical

structure by reading a CSV file, you can extend the functionality of the read_csv() function

by adding the index_col option, assigning all the columns to be converted into indexes.

To better understand this possibility, create a new CSV file with two columns to be

used as indexes of the hierarchy. Then, save it in the working directory as ch05_03.csv

(see Listing 5-3).

Listing 5-3. ch05_03.csv

color,status,item1,item2,item3

black,up,3,4,6

black,down,2,6,7

white,up,5,5,5

white,down,3,3,2

white,left,1,2,1

red,up,2,2,2

red,down,1,1,4

>>> pd.read_csv('ch05_03.csv', index_col=['color','status'])

 item1 item2 item3

color status

black up 3 4 6

 down 2 6 7

white up 5 5 5

 down 3 3 2

 left 1 2 1

red up 2 2 2

 down 1 1 4

Chapter 5 pandas: reading and Writing data

146

 Using RegExp to Parse TXT Files
In other cases, it is possible that the files on which to parse the data do not show

separators well defined as a comma or a semicolon. In these cases, the regular

expressions come to our aid. In fact, you can specify a regexp within the read_table()

function using the sep option.

To better understand regexp and understand how you can apply it as criteria for

value separation, let’s start with a simple case. For example, suppose that your TXT

file has values that are separated by spaces or tabs in an unpredictable order. In this

case, you have to use the regexp, because that’s the only way to take into account both

separator types. You can do that using the wildcard /s*. /s stands for the space or tab

character (if you want to indicate a tab, you use /t), while the asterisk indicates that

there may be multiple characters (see Table 5-1 for other common wildcards). That is,

the values may be separated by more spaces or more tabs.

Table 5-1. Metacharacters

. single character, except newline

\d digit

\D non-digit character

\s Whitespace character

\S non-whitespace character

\n new line character

\t tab character

\uxxxx Unicode character specified by the

hexadecimal number xxxx

Take for example an extreme case in which we have the values separated by tabs or

spaces in a random order (see Listing 5-4).

Chapter 5 pandas: reading and Writing data

147

Listing 5-4. ch05_04.txt

white red blue green

 1 5 2 3

 2 7 8 5

 3 3 6 7

>>> pd.read_table('ch05_04.txt',sep='\s+', engine='python')

 white red blue green

0 1 5 2 3

1 2 7 8 5

2 3 3 6 7

As you can see, the result is a perfect dataframe in which the values are perfectly

ordered.

Now you will see an example that may seem strange or unusual, but it is not as rare

as it may seem. This example can be very helpful in understanding the high potential of a

regexp. In fact, you might typically think of separators as special characters like commas,

spaces, tabs, etc., but in reality you can consider separator characters like alphanumeric

characters, or for example, integers such as 0.

In this example, you need to extract the numeric part from a TXT file, in which

there is a sequence of characters with numerical values and the literal characters are

completely fused.

Remember to set the header option to None whenever the column headings are not

present in the TXT file (see Listing 5-5).

Listing 5-5. ch05_05.txt

000END123AAA122

001END124BBB321

002END125CCC333

>>> pd.read_table('ch05_05.txt', sep='\D+', header=None, engine='python')

 0 1 2

0 0 123 122

1 1 124 321

2 2 125 333

Chapter 5 pandas: reading and Writing data

148

Another fairly common event is to exclude lines from parsing. In fact you do not always

want to include headers or unnecessary comments contained in a file (see Listing 5-6).

With the skiprows option, you can exclude all the lines you want, just assigning an array

containing the line numbers to not consider in parsing.

Pay attention when you are using this option. If you want to exclude the first five

lines, you have to write skiprows = 5, but if you want to rule out the fifth line, you have

to write skiprows = [5].

Listing 5-6. ch05_06.txt

########### LOG FILE ############

This file has been generated by automatic system

white,red,blue,green,animal

12-Feb-2015: Counting of animals inside the house

1,5,2,3,cat

2,7,8,5,dog

13-Feb-2015: Counting of animals outside the house

3,3,6,7,horse

2,2,8,3,duck

4,4,2,1,mouse

>>> pd.read_table('ch05_06.txt',sep=',',skiprows=[0,1,3,6])

 white red blue green animal

0 1 5 2 3 cat

1 2 7 8 5 dog

2 3 3 6 7 horse

3 2 2 8 3 duck

4 4 4 2 1 mouse

 Reading TXT Files Into Parts
When large files are processed, or when you are only interested in portions of these files,

you often need to read the file into portions (chunks). This is both to apply any iterations

and because we are not interested in parsing the entire file.

Chapter 5 pandas: reading and Writing data

149

If, for example, you wanted to read only a portion of the file, you can explicitly specify

the number of lines on which to parse. Thanks to the nrows and skiprows options, you

can select the starting line n (n = SkipRows) and the lines to be read after it (nrows = i).

>>> pd.read_csv('ch05_02.csv',skiprows=[2],nrows=3,header=None)

 0 1 2 3 4

0 1 5 2 3 cat

1 2 7 8 5 dog

2 2 2 8 3 duck

Another interesting and fairly common operation is to split into portions that part of

the text on which you want to parse. Then, for each portion a specific operation may be

carried out, in order to obtain an iteration, portion by portion.

For example, you want to add the values in a column every three rows and then

insert these sums in a series. This example is trivial and impractical but is very simple

to understand, so once you have learned the underlying mechanism, you will be able to

apply it in more complex cases.

>>> out = pd.Series()

>>> i = 0

>>> pieces = pd.read_csv('ch05_01.csv',chunksize=3)

>>> for piece in pieces:

... out.set_value(i,piece['white'].sum())

... i = i + 1

...

0 6

dtype: int64

0 6

1 6

dtype: int64

>>> out

0 6

1 6

dtype: int64

Chapter 5 pandas: reading and Writing data

150

 Writing Data in CSV
In addition to reading the data contained in a file, it’s also common to write a data file

produced by a calculation, or in general the data contained in a data structure.

For example, you might want to write the data contained in a dataframe to a CSV

file. To do this writing process, you will use the to_csv() function, which accepts as an

argument the name of the file you generate (see Listing 5-7).

>>> frame = pd.DataFrame(np.arange(16).reshape((4,4)),

 index = ['red', 'blue', 'yellow', 'white'],

 columns = ['ball', 'pen', 'pencil', 'paper'])

>>> frame.to_csv('ch05_07.csv')

If you open the new file called ch05_07.csv generated by the pandas library, you will

see data as in Listing 5-7.

Listing 5-7. ch05_07.csv

,ball,pen,pencil,paper

0,1,2,3

4,5,6,7

8,9,10,11

12,13,14,15

As you can see from the previous example, when you write a dataframe to a file,

indexes and columns are marked on the file by default. This default behavior can be

changed by setting the two options index and header to False (see Listing 5-8).

>>> frame.to_csv('ch05_07b.csv', index=False, header=False)

Listing 5-8. ch05_07b.csv

1,2,3

5,6,7

9,10,11

13,14,15

Chapter 5 pandas: reading and Writing data

151

One point to remember when writing files is that NaN values present in a data

structure are shown as empty fields in the file (see Listing 5-9).

>>> frame3 = pd.DataFrame([[6,np.nan,np.nan,6,np.nan],

... [np.nan,np.nan,np.nan,np.nan,np.nan],

... [np.nan,np.nan,np.nan,np.nan,np.nan],

... [20,np.nan,np.nan,20.0,np.nan],

... [19,np.nan,np.nan,19.0,np.nan]

...],

... index=['blue','green','red','white','yellow'],

 columns=['ball','mug','paper','pen','pencil'])

>>> frame3

 ball mug paper pen pencil

blue 6.0 NaN NaN 6.0 NaN

green NaN NaN NaN NaN NaN

red NaN NaN NaN NaN NaN

white 20.0 NaN NaN 20.0 NaN

yellow 19.0 NaN NaN 19.0 NaN

>>> frame3.to_csv('ch05_08.csv')

Listing 5-9. ch05_08.csv

,ball,mug,paper,pen,pencil

blue,6.0,,,6.0,

green,,,,,

red,,,,,

white,20.0,,,20.0,

yellow,19.0,,,19.0,

However, you can replace this empty field with a value to your liking using the

na_rep option in the to_csv() function. Common values may be NULL, 0, or the same

NaN (see Listing 5-10).

>>> frame3.to_csv('ch05_09.csv', na_rep ='NaN')

Chapter 5 pandas: reading and Writing data

152

Listing 5-10. ch05_09.csv

,ball,mug,paper,pen,pencil

blue,6.0,NaN,NaN,6.0,NaN

green,NaN,NaN,NaN,NaN,NaN

red,NaN,NaN,NaN,NaN,NaN

white,20.0,NaN,NaN,20.0,NaN

yellow,19.0,NaN,NaN,19.0,NaN

Note in the cases specified, dataframe has always been the subject of
discussion since these are the data structures that are written to the file. But all
these functions and options are also valid with regard to the series.

 Reading and Writing HTML Files
pandas provides the corresponding pair of I/O API functions for the HTML format.

• read_html()

• to_html()

These two functions can be very useful. You will appreciate the ability to convert

complex data structures such as dataframes directly into HTML tables without having to

hack a long listing in HTML, especially if you’re dealing with the Web.

The inverse operation can be very useful, because now the major source of data is

just the web world. In fact, a lot of data on the Internet does not always have the form

“ready to use,” that is packaged in some TXT or CSV file. Very often, however, the data are

reported as part of the text of web pages. So also having available a function for reading

could prove to be really useful.

This activity is so widespread that it is currently identified as web scraping. This

process is becoming a fundamental part of the set of processes that will be integrated in

the first part of data analysis: data mining and data preparation.

Chapter 5 pandas: reading and Writing data

153

Note Many websites have now adopted the htML5 format, to avoid any issues of
missing modules and error messages. i strongly recommend you install the module
html5lib. anaconda specified:

conda install html5lib

 Writing Data in HTML
Now you learn how to convert a dataframe into an HTML table. The internal structure

of the dataframe is automatically converted into nested tags <TH>, <TR>, and <TD>

retaining any internal hierarchies. You do not need to know HTML to use this kind of

function.

Because the data structures as the dataframe can be quite complex and large, it’s

great to have a function like this when you need to develop web pages.

To better understand this potential, here’s an example. You can start by defining a

simple dataframe.

Thanks to the to_html() function, you can directly convert the dataframe into an

HTML table.

>>> frame = pd.DataFrame(np.arange(4).reshape(2,2))

Since the I/O API functions are defined in the pandas data structures, you can call

the to_html() function directly on the instance of the dataframe.

>>> print(frame.to_html())

<table border="1" class="dataframe">

 <thead>

 <tr style="text-align: right;">

 <th></th>

 <th>0</th>

 <th>1</th>

 </tr>

 </thead>

 <tbody>

Chapter 5 pandas: reading and Writing data

154

 <tr>

 <th>0</th>

 <td> 0</td>

 <td> 1</td>

 </tr>

 <tr>

 <th>1</th>

 <td> 2</td>

 <td> 3</td>

 </tr>

 </tbody>

</table>

As you can see, the whole structure formed by the HTML tags needed to create an

HTML table was generated correctly in order to respect the internal structure of the

dataframe.

In the next example, you’ll see how the table appears automatically generated within

an HTML file. In this regard, we create a dataframe a bit more complex than the previous

one, where there are the labels of the indexes and column names.

>>> frame = pd.DataFrame(np.random.random((4,4)),

... index = ['white','black','red','blue'],

... columns = ['up','down','right','left'])

>>> frame

 up down right left

white 0.292434 0.457176 0.905139 0.737622

black 0.794233 0.949371 0.540191 0.367835

red 0.204529 0.981573 0.118329 0.761552

blue 0.628790 0.585922 0.039153 0.461598

Now you focus on writing an HTML page through the generation of a string. This

is a simple and trivial example, but it is very useful to understand and to test the

functionality of pandas directly on the web browser.

Chapter 5 pandas: reading and Writing data

155

First of all we create a string that contains the code of the HTML page.

>>> s = ['<HTML>']

>>> s.append('<HEAD><TITLE>My DataFrame</TITLE></HEAD>')

>>> s.append('<BODY>')

>>> s.append(frame.to_html())

>>> s.append('</BODY></HTML>')

>>> html = ".join(s)

Now that all the listing of the HTML page is contained within the html variable, you

can write directly on the file that will be called myFrame.html:

>>> html_file = open('myFrame.html','w')

>>> html_file.write(html)

>>> html_file.close()

Now in your working directory will be a new HTML file, myFrame.html. Double-click

it to open it directly from the browser. An HTML table will appear in the upper left, as

shown in Figure 5-1.

Figure 5-1. The dataframe is shown as an HTML table in the web page

 Reading Data from an HTML File
As you just saw, pandas can easily generate HTML tables starting from the dataframe.

The opposite process is also possible; the function read_html () will perform a parsing

an HTML page looking for an HTML table. If found, it will convert that table into an

object dataframe ready to be used in our data analysis.

Chapter 5 pandas: reading and Writing data

156

More precisely, the read_html() function returns a list of dataframes even if there is

only one table. The source that will be parsed can be different types. For example, you

may have to read an HTML file in any directory. For example you can parse the HTML

file you created in the previous example:

>>> web_frames = pd.read_html('myFrame.html')

>>> web_frames[0]

 Unnamed: 0 up down right left

0 white 0.292434 0.457176 0.905139 0.737622

1 black 0.794233 0.949371 0.540191 0.367835

2 red 0.204529 0.981573 0.118329 0.761552

3 blue 0.628790 0.585922 0.039153 0.461598

As you can see, all of the tags that have nothing to do with HTML table are not

considered absolutely. Furthermore web_frames is a list of dataframes, although in your

case, the dataframe that you are extracting is only one. However, you can select the item

in the list that you want to use, calling it in the classic way. In this case, the item is unique

and therefore the index will be 0.

However, the mode most commonly used regarding the read_html() function is that

of a direct parsing of an URL on the Web. In this way the web pages in the network are

directly parsed with the extraction of the tables in them.

For example, now you will call a web page where there is an HTML table that shows a

ranking list with some names and scores.

>>> ranking = pd.read_html('https://www.meccanismocomplesso.org/en/

meccanismo-complesso-sito-2/classifica-punteggio/')

>>> ranking[0]

 Member points levels Unnamed: 3

0 1 BrunoOrsini 1075 NaN

1 2 Berserker 700 NaN

2 3 albertosallu 275 NaN

3 4 Mr.Y 180 NaN

4 5 Jon 170 NaN

5 6 michele sisi 120 NaN

6 7 STEFANO GUST 120 NaN

7 8 Davide Alois 105 NaN

8 9 Cecilia Lala 105 NaN

...

Chapter 5 pandas: reading and Writing data

157

The same operation can be run on any web page that has one or more tables.

 Reading Data from XML
In the list of I/O API functions, there is no specific tool regarding the XML (Extensible

Markup Language) format. In fact, although it is not listed, this format is very important,

because many structured data are available in XML format. This presents no problem,

since Python has many other libraries (besides pandas) that manage the reading and

writing of data in XML format.

One of these libraries is the lxml library, which stands out for its excellent

performance during the parsing of very large files. In this section you learn how to use

this module for parsing XML files and how to integrate it with pandas to finally get the

dataframe containing the requested data. For more information about this library, I

highly recommend visiting the official website of lxml at http://lxml.de/index.html.

Take for example the XML file shown in Listing 5-11. Write down and save it with the

name books.xml directly in your working directory.

Listing 5-11. books.xml

<?xml version="1.0"?>

<Catalog>

 <Book id="ISBN9872122367564">

 <Author>Ross, Mark</Author>

 <Title>XML Cookbook</Title>

 <Genre>Computer</Genre>

 <Price>23.56</Price>

 <PublishDate>2014-22-01</PublishDate>

 </Book>

 <Book id="ISBN9872122367564">

 <Author>Bracket, Barbara</Author>

 <Title>XML for Dummies</Title>

 <Genre>Computer</Genre>

 <Price>35.95</Price>

 <PublishDate>2014-12-16</PublishDate>

 </Book>

</Catalog>

Chapter 5 pandas: reading and Writing data

http://lxml.de/index.html

158

In this example, you will take the data structure described in the XML file to convert

it directly into a dataframe. The first thing to do is use the sub-module objectify of the

lxml library, importing it in the following way.

>>> from lxml import objectify

Now you can do the parser of the XML file with just the parse() function.

>>> xml = objectify.parse('books.xml')

>>> xml

<lxml.etree._ElementTree object at 0x0000000009734E08>

You got an object tree, which is an internal data structure of the lxml module.

Look in more detail at this type of object. To navigate in this tree structure, so as

to select element by element, you must first define the root. You can do this with the

getroot() function.

>>> root = xml.getroot()

Now that the root of the structure has been defined, you can access the various nodes

of the tree, each corresponding to the tag contained in the original XML file. The items will

have the same name as the corresponding tags. So to select them, simply write the various

separate tags with points, reflecting in a certain way the hierarchy of nodes in the tree.

>>> root.Book.Author

'Ross, Mark'

>>> root.Book.PublishDate

'2014-22-01'

In this way you access nodes individually, but you can access various elements at the

same time using getchildren(). With this function, you’ll get all the child nodes of the

reference element.

>>> root.getchildren()

[<Element Book at 0x9c66688>, <Element Book at 0x9c66e08>]

With the tag attribute you get the name of the tag corresponding to the child node.

>>> [child.tag for child in root.Book.getchildren()]

['Author', 'Title', 'Genre', 'Price', 'PublishDate']

Chapter 5 pandas: reading and Writing data

159

While with the text attribute you get the value contained between the

corresponding tags.

>>> [child.text for child in root.Book.getchildren()]

['Ross, Mark', 'XML Cookbook', 'Computer', '23.56', '2014-22-01']

However, regardless of the ability to move through the lxml.etree tree structure,

what you need is to convert it into a dataframe. Define the following function, which has

the task of analyzing the contents of an eTree to fill a dataframe line by line.

>>> def etree2df(root):

... column_names = []

... for i in range(0,len(root.getchildren()[0].getchildren())):

... column_names.append(root.getchildren()[0].getchildren()[i].tag)

... xml:frame = pd.DataFrame(columns=column_names)

... for j in range(0, len(root.getchildren())):

... obj = root.getchildren()[j].getchildren()

... texts = []

... for k in range(0, len(column_names)):

... texts.append(obj[k].text)

... row = dict(zip(column_names, texts))

... row_s = pd.Series(row)

... row_s.name = j

... xml:frame = xml:frame.append(row_s)

... return xml:frame

...

>>> etree2df(root)

 Author Title Genre Price PublishDate

0 Ross, Mark XML Cookbook Computer 23.56 2014-22-01

1 Bracket, Barbara XML for Dummies Computer 35.95 2014-12-16

 Reading and Writing Data on Microsoft Excel Files
In the previous section, you saw how the data can be easily read from CSV files. It is

not uncommon, however, that there are data collected in tabular form in an Excel

spreadsheet.

Chapter 5 pandas: reading and Writing data

160

pandas provides specific functions for this type of format. You have seen that the I/O

API provides two functions to this purpose:

• to_excel()

• read_excel()

The read_excel() function can read Excel 2003 (.xls) files and Excel 2007 (.xlsx) files.

This is possible thanks to the integration of the internal module xlrd.

First, open an Excel file and enter the data as shown in Figure 5-2. Copy the data in

sheet1 and sheet2. Then save it as ch05_data.xlsx.

Figure 5-2. The two datasets in sheet1 and sheet2 of an Excel file

Chapter 5 pandas: reading and Writing data

161

To read the data contained in the XLS file and convert it into a dataframe, you only

have to use the read_excel() function.

>>> pd.read_excel('ch05_data.xlsx')

 white red green black

a 12 23 17 18

b 22 16 19 18

c 14 23 22 21

As you can see, by default, the returned dataframe is composed of the data

tabulated in the first spreadsheets. If, however, you need to load the data in the second

spreadsheet, you must then specify the name of the sheet or the number of the sheet

(index) just as the second argument.

>>> pd.read_excel('ch05_data.xlsx','Sheet2')

 yellow purple blue orange

A 11 16 44 22

B 20 22 23 44

C 30 31 37 32

>>> pd.read_excel('ch05_data.xlsx',1)

 yellow purple blue orange

A 11 16 44 22

B 20 22 23 44

C 30 31 37 32

The same applies for writing. To convert a dataframe into a spreadsheet on Excel,

you have to write the following.

>>> frame = pd.DataFrame(np.random.random((4,4)),

... index = ['exp1','exp2','exp3','exp4'],

... columns = ['Jan2015','Fab2015','Mar2015','Apr2005'])

>>> frame

 Jan2015 Fab2015 Mar2015 Apr2005

exp1 0.030083 0.065339 0.960494 0.510847

exp2 0.531885 0.706945 0.964943 0.085642

exp3 0.981325 0.868894 0.947871 0.387600

exp4 0.832527 0.357885 0.538138 0.357990

>>> frame.to_excel('data2.xlsx')

Chapter 5 pandas: reading and Writing data

162

In the working directory, you will find a new Excel file containing the data, as shown

in Figure 5-3.

 JSON Data
JSON (JavaScript Object Notation) has become one of the most common standard

formats, especially for the transmission of data on the Web. So it is normal to work with

this data format if you want to use data on the Web.

The special feature of this format is its great flexibility, although its structure is far

from being the one to which you are well accustomed, i.e., tabular.

In this section you will see how to use the read_json() and to_json() functions to

stay within the I/O API functions discussed in this chapter. But in the second part you

will see another example in which you will have to deal with structured data in JSON

format much more related to real cases.

In my opinion, a useful online application for checking the JSON format is

JSONViewer, available at http://jsonviewer.stack.hu/. This web application, once

you enter or copy data in JSON format, allows you to see if the format you entered

is valid. Moreover it displays the tree structure so that you can better understand its

structure (see Figure 5-4).

Figure 5-3. The dataframe in the Excel file

Chapter 5 pandas: reading and Writing data

http://jsonviewer.stack.hu/

163

Let’s begin with the more useful case, that is, when you have a dataframe and you

need to convert it into a JSON file. So, define a dataframe and then call the to_json()

function on it, passing as an argument the name of the file that you want to create.

>>> frame = pd.DataFrame(np.arange(16).reshape(4,4),

... index=['white','black','red','blue'],

... columns=['up','down','right','left'])

>>> frame.to_json('frame.json')

In the working directory, you will find a new JSON file (see Listing 5-12) containing

the dataframe data translated into JSON format.

Figure 5-4. JSONViewer

Chapter 5 pandas: reading and Writing data

164

Listing 5-12. frame.json

{"up":{"white":0,"black":4,"red":8,"blue":12},"down":{"white":1,"black":5,

"red":9,"blue":13},"right":{"white":2,"black":6,"red":10,"blue":14},

"left":{"white":3,"black":7,"red":11,"blue":15}}

The converse is possible, using the read_json() with the name of the file passed as

an argument.

>>> pd.read_json('frame.json')

 down left right up

black 5 7 6 4

blue 13 15 14 12

red 9 11 10 8

white 1 3 2 0

The example you have seen is a fairly simple case in which the JSON data were in

tabular form (since the file frame.json comes from a dataframe). Generally, however,

the JSON files do not have a tabular structure. Thus, you will need to somehow convert

the structure dict file into tabular form. This process is called normalization.

The library pandas provides a function, called json_normalize(), that is able to

convert a dict or a list in a table. First you have to import the function:

>>> from pandas.io.json import json_normalize

Then you write a JSON file as described in Listing 5-13 with any text editor. Save it in

the working directory as books.json.

Listing 5-13. books.json

[{"writer": "Mark Ross",

 "nationality": "USA",

 "books": [

 {"title": "XML Cookbook", "price": 23.56},

 {"title": "Python Fundamentals", "price": 50.70},

 {"title": "The NumPy library", "price": 12.30}

]

},

Chapter 5 pandas: reading and Writing data

165

{"writer": "Barbara Bracket",

 "nationality": "UK",

 "books": [

 {"title": "Java Enterprise", "price": 28.60},

 {"title": "HTML5", "price": 31.35},

 {"title": "Python for Dummies", "price": 28.00}

]

}]

As you can see, the file structure is no longer tabular, but more complex. Then

the approach with the read_json() function is no longer valid. As you learn from this

example, you can still get the data in tabular form from this structure. First you have to

load the contents of the JSON file and convert it into a string.

>>> import json

>>> file = open('books.json','r')

>>> text = file.read()

>>> text = json.loads(text)

Now you are ready to apply the json_normalize() function. From a quick look at the

contents of the data within the JSON file, for example, you might want to extract a table

that contains all the books. Then write the books key as the second argument.

>>> json_normalize(text,'books')

 price title

0 23.56 XML Cookbook

1 50.70 Python Fundamentals

2 12.30 The NumPy library

3 28.60 Java Enterprise

4 31.35 HTML5

5 28.00 Python for Dummies

The function will read the contents of all the elements that have books as the key. All

properties will be converted into nested column names while the corresponding values

will fill the dataframe. For the indexes, the function assigns a sequence of increasing

numbers.

Chapter 5 pandas: reading and Writing data

166

However, you get a dataframe containing only some internal information. It would

be useful to add the values of other keys on the same level. In this case you can add other

columns by inserting a key list as the third argument of the function.

>>> json_normalize(text,'books',['nationality','writer'])

 price title nationality writer

0 23.56 XML Cookbook USA Mark Ross

1 50.70 Python Fundamentals USA Mark Ross

2 12.30 The NumPy library USA Mark Ross

3 28.60 Java Enterprise UK Barbara Bracket

4 31.35 HTML5 UK Barbara Bracket

5 28.00 Python for Dummies UK Barbara Bracket

Now as a result you get a dataframe from a starting tree structure.

 The Format HDF5
So far you have seen how to write and read data in text format. When your data analysis

involves large amounts of data, it is preferable to use them in binary format. There are

several tools in Python to handle binary data. A library that is having some success in

this area is the HDF5 library.

The HDF term stands for hierarchical data format, and in fact this library is

concerned with reading and writing HDF5 files containing a structure with nodes and

the possibility to store multiple datasets.

This library, fully developed in C, however, has also interfaces with other types of

languages like Python, MATLAB, and Java. It is very efficient, especially when using

this format to save huge amounts of data. Compared to other formats that work more

simply in binary, HDF5 supports compression in real time, thereby taking advantage of

repetitive patterns in the data structure to compress the file size.

At present, the possible choices in Python are PyTables and h5py. These two forms

differ in several aspects and therefore their choice depends very much on the needs of

those who use it.

h5py provides a direct interface with the high-level APIs HDF5, while PyTables

makes abstract many of the details of HDF5 to provide more flexible data containers,

indexed tables, querying capabilities, and other media on the calculations.

Chapter 5 pandas: reading and Writing data

167

pandas has a class-like dict called HDFStore, using PyTables to store pandas objects.

So before working with the format HDF5, you must import the HDFStore class:

>>> from pandas.io.pytables import HDFStore

Now you’re ready to store the data of a dataframe within an.h5 file. First, create a

dataframe.

>>> frame = pd.DataFrame(np.arange(16).reshape(4,4),

... index=['white','black','red','blue'],

... columns=['up','down','right','left'])

Now create a file HDF5 calling it mydata.h5, then enter the data inside of the

dataframe.

>>> store = HDFStore('mydata.h5')

>>> store['obj1'] = frame

From here, you can guess how you can store multiple data structures within

the same HDF5 file, specifying for each of them a label.

>>> frame

 up down right left

white 0 0.5 1 1.5

black 2 2.5 3 3.5

red 4 4.5 5 5.5

blue 6 6.5 7 7.5

>>> store['obj2'] = frame

So with this type of format, you can store multiple data structures in a single file,

represented by the store variable.

>>> store

<class 'pandas.io.pytables.HDFStore'>

File path: mydata.h5

/obj1 frame (shape->[4,4])

Chapter 5 pandas: reading and Writing data

168

Even the reverse process is very simple. Taking account of having an HDF5 file

containing various data structures, objects inside can be called in the following way:

>>> store['obj2']

 up down right left

white 0 0.5 1 1.5

black 2 2.5 3 3.5

red 4 4.5 5 5.5

blue 6 6.5 7 7.5

 Pickle—Python Object Serialization
The pickle module implements a powerful algorithm for serialization and

deserialization of a data structure implemented in Python. Pickling is the process in

which the hierarchy of an object is converted into a stream of bytes.

This allows an object to be transmitted and stored, and then to be rebuilt by the

receiver itself retaining all the original features.

In Python, the picking operation is carried out by the pickle module, but currently

there is a module called cPickle which is the result of an enormous amount of work

optimizing the pickle module (written in C). This module can be in fact in many cases

even 1,000 times faster than the pickle module. However, regardless of which module

you do use, the interfaces of the two modules are almost the same.

Before moving to explicitly mention the I/O functions of pandas that operate on this

format, let’s look in more detail at the cPickle module and see how to use it.

 Serialize a Python Object with cPickle
The data format used by the pickle (or cPickle) module is specific to Python. By

default, an ASCII representation is used to represent it, in order to be readable from

the human point of view. Then, by opening a file with a text editor, you may be able to

understand its contents. To use this module, you must first import it:

>>> import pickle

Then create an object sufficiently complex to have an internal data structure, for

example a dict object.

>>> data = { 'color': ['white','red'], 'value': [5, 7]}

Chapter 5 pandas: reading and Writing data

169

Now you will perform a serialization of the data object through the dumps() function

of the cPickle module.

>>> pickled_data = pickle.dumps(data)

Now, to see how it serialized the dict object, you need to look at the contents of the

pickled_data variable.

>>> print(pickled_data)

(dp1

S'color'

p2

(lp3

S'white'

p4

aS'red'

p5

asS'value'

p6

(lp7

I5

aI7

as.

Once you have serialized data, they can easily be written on a file or sent over a

socket, pipe, etc.

After being transmitted, it is possible to reconstruct the serialized object

(deserialization) with the loads() function of the cPickle module.

>>> nframe = pickle.loads(pickled_data)

>>> nframe

{'color': ['white', 'red'], 'value': [5, 7]}

 Pickling with pandas
When it comes to pickling (and unpickling) with the pandas library, everything is much

easier. There is no need to import the cPickle module in the Python session and the

whole operation is performed implicitly.

Chapter 5 pandas: reading and Writing data

170

Also, the serialization format used by pandas is not completely in ASCII.

>>> frame = pd.DataFrame(np.arange(16).reshape(4,4), index =

['up','down','left','right'])

>>> frame.to_pickle('frame.pkl')

There is a new file called frame.pkl in your working directory that contains all the

information about the frame dataframe.

To open a PKL file and read the contents, simply use this command:

>>> pd.read_pickle('frame.pkl')

 0 1 2 3

up 0 1 2 3

down 4 5 6 7

left 8 9 10 11

right 12 13 14 15

As you can see, all the implications on the operation of pickling and unpickling are

completely hidden from the pandas user, making the job as easy and understandable as

possible, for those who must deal specifically with data analysis.

Note When you use this format make sure that the file you open is safe. indeed,
the pickle format was not designed to be protected against erroneous and
maliciously constructed data.

 Interacting with Databases
In many applications, the data rarely come from text files, given that this is certainly not

the most efficient way to store data.

The data are often stored in an SQL-based relational database, and also in many

alternative NoSQL databases that have become very popular in recent times.

Loading data from SQL in a dataframe is sufficiently simple and pandas has some

functions to simplify the process.

Chapter 5 pandas: reading and Writing data

171

The pandas.io.sql module provides a unified interface independent of the DB,

called sqlalchemy. This interface simplifies the connection mode, since regardless of the

DB, the commands will always be the same. To make a connection you use the create_

engine() function. With this feature you can configure all the properties necessary to

use the driver, as a user, password, port, and database instance.

Here is a list of examples for the various types of databases:

>>> from sqlalchemy import create_engine

For PostgreSQL:

>>> engine = create_engine('postgresql://scott:tiger@localhost:5432/mydatabase')

For MySQL

>>> engine = create_engine('mysql+mysqldb://scott:tiger@localhost/foo')

For Oracle

>>> engine = create_engine('oracle://scott:tiger@127.0.0.1:1521/sidname')

For MSSQL

>>> engine = create_engine('mssql+pyodbc://mydsn')

For SQLite

>>> engine = create_engine('sqlite:///foo.db')

 Loading and Writing Data with SQLite3
As a first example, you will use a SQLite database using the driver’s built-in Python

sqlite3. SQLite3 is a tool that implements a DBMS SQL in a very simple and lightweight

way, so it can be incorporated in any application implemented with the Python

language. In fact, this practical software allows you to create an embedded database in a

single file.

This makes it the perfect tool for anyone who wants to have the functions of a

database without having to install a real database. SQLite3 could be the right choice

for anyone who wants to practice before going on to a real database, or for anyone who

needs to use the functions of a database to collect data, but remaining within a single

program, without having to interface with a database.

Chapter 5 pandas: reading and Writing data

172

Create a dataframe that you will use to create a new table on the SQLite3 database.

>>> frame = pd.DataFrame(np.arange(20).reshape(4,5),

... columns=['white','red','blue','black','green'])

>>> frame

 white red blue black green

0 0 1 2 3 4

1 5 6 7 8 9

2 10 11 12 13 14

3 15 16 17 18 19

Now it’s time to implement the connection to the SQLite3 database.

>>> engine = create_engine('sqlite:///foo.db')

Convert the dataframe in a table within the database.

>>> frame.to_sql('colors',engine)

Instead, to read the database, you have to use the read_sql() function with the

name of the table and the engine.

>>> pd.read_sql('colors',engine)

 index white red blue black green

0 0 0 1 2 3 4

1 1 5 6 7 8 9

2 2 10 11 12 13 14

3 3 15 16 17 18 19

As you can see, even in this case, the writing operation on the database has become

very simple thanks to the I/O APIs available in the pandas library.

Now you’ll see instead the same operations, but not using the I/O API. This can be

useful to get an idea of how pandas proves to be an effective tool for reading and writing

data to a database.

First, you must establish a connection to the DB and create a table by defining the

corrected data types, so as to accommodate the data to be loaded.

>>> import sqlite3

>>> query = """

... CREATE TABLE test

Chapter 5 pandas: reading and Writing data

173

... (a VARCHAR(20), b VARCHAR(20),

... c REAL, d INTEGER

...);"""

>>> con = sqlite3.connect(':memory:')

>>> con.execute(query)

<sqlite3.Cursor object at 0x0000000009E7D730>

>>> con.commit()

Now you can enter data using the SQL INSERT statement.

>>> data = [('white','up',1,3),

... ('black','down',2,8),

... ('green','up',4,4),

... ('red','down',5,5)]

>>> stmt = "INSERT INTO test VALUES(?,?,?,?)"

>>> con.executemany(stmt, data)

<sqlite3.Cursor object at 0x0000000009E7D8F0>

>>> con.commit()

Now that you’ve seen how to load the data on a table, it is time to see how to query

the database to get the data you just recorded. This is possible using an SQL SELECT

statement.

>>> cursor = con.execute('select * from test')

>>> cursor

<sqlite3.Cursor object at 0x0000000009E7D730>

>>> rows = cursor.fetchall()

>>> rows

[(u'white', u'up', 1.0, 3), (u'black', u'down', 2.0, 8), (u'green', u'up',

4.0, 4), (u'red', 5.0, 5)]

You can pass the list of tuples to the constructor of the dataframe, and if you need the

name of the columns, you can find them within the description attribute of the cursor.

>>> cursor.description

(('a', None, None, None, None, None, None), ('b', None, None, None, None,

None, None), ('c

Chapter 5 pandas: reading and Writing data

174

one, None, None, None, None), ('d', None, None, None, None, None, None))

>>> pd.DataFrame(rows, columns=zip(*cursor.description)[0])

 a b c d

0 white up 1 3

1 black down 2 8

2 green up 4 4

3 red down 5 5

As you can see, this approach is quite laborious.

 Loading and Writing Data with PostgreSQL
From pandas 0.14, the PostgreSQL database is also supported. So double-check if the

version on your PC corresponds to this version or greater.

>>> pd.__version__

>>> '0.22.0'

To run this example, you must have installed on your system a PostgreSQL database.

In my case I created a database called postgres, with postgres as the user and password

as the password. Replace these values with the values corresponding to your system.

The first thing to do is install the psycopg2 library, which is designed to manage and

handle the connection with the databases.

With Anaconda:

conda install psycopg2

Or if you are using PyPi:

pip install psycopg2

Now you can establish a connection with the database:

>>> import psycopg2

>>> engine = create_engine('postgresql://postgres:password@localhost:5432/

postgres')

Chapter 5 pandas: reading and Writing data

175

Note in this example, depending on how you installed the package on Windows,
often you get the following error message:

from psycopg2._psycopg import BINARY, NUMBER, STRING,
DATETIME, ROWID

ImportError: DLL load failed: The specified module could not
be found.

This probably means you don’t have the PostgreSQL DLLs (libpq.dll in particular)

in your PATH. Add one of the postgres\x.x\bin directories to your PATH and you should

be able to connect from Python to your PostgreSQL installations.

Create a dataframe object:

>>> frame = pd.DataFrame(np.random.random((4,4)),

 index=['exp1','exp2','exp3','exp4'],

 columns=['feb','mar','apr','may']);

Now we see how easily you can transfer this data to a table. With to_sql() you will

record the data in a table called dataframe.

>>> frame.to_sql('dataframe',engine)

pgAdmin III is a graphical application for managing PostgreSQL databases. It’s a very

useful tool and is present on Linux and Windows. With this application, it is easy to see

the table dataframe you just created (see Figure 5-5).

Chapter 5 pandas: reading and Writing data

176

If you know the SQL language well, a more classic way to see the new created table

and its contents is using a psql session.

>>> psql -U postgres

In my case, I am connected to the postgres user; it may be different in your case. Once

you’re connected to the database, perform an SQL query on the newly created table.

Figure 5-5. The pgAdmin III application is a perfect graphical DB manager for
PostgreSQL

Chapter 5 pandas: reading and Writing data

177

postgres=# SELECT * FROM DATAFRAME;

index| feb | mar | apr | may

-----+-----------------+-----------------+-----------------+-----------------

exp1 |0.757871296789076|0.422582915331819|0.979085739226726|0.332288515791064

exp2 |0.124353978978927|0.273461421503087|0.049433776453223|0.0271413946693556

exp3 |0.538089036334938|0.097041417119426|0.905979807772598|0.123448718583967

exp4 |0.736585422687497|0.982331931474687|0.958014824504186|0.448063967996436

(4 righe)

Even the conversion of a table in a dataframe is a trivial operation. Even here there

is a read_sql_table() function that reads directly on the database and returns a

dataframe.

>>> pd.read_sql_table('dataframe',engine)

 index feb mar apr may

0 exp1 0.757871 0.422583 0.979086 0.332289

1 exp2 0.124354 0.273461 0.049434 0.027141

2 exp3 0.538089 0.097041 0.905980 0.123449

3 exp4 0.736585 0.982332 0.958015 0.448064

But when you want to read data in a database, the conversion of a whole and single

table into a dataframe is not the most useful operation. In fact, those who work with

relational databases prefer to use the SQL language to choose what data and in what

form to export the data by inserting an SQL query.

The text of an SQL query can be integrated in the read_sql_query() function.

>>> pd.read_sql_query('SELECT index,apr,may FROM DATAFRAME WHERE apr >

0.5',engine)

 index apr may

0 exp1 0.979086 0.332289

1 exp3 0.905980 0.123449

2 exp4 0.958015 0.448064

Chapter 5 pandas: reading and Writing data

178

 Reading and Writing Data with a NoSQL Database:
MongoDB
Among all the NoSQL databases (BerkeleyDB, Tokyo Cabinet, and MongoDB),

MongoDB is becoming the most widespread. Given its diffusion in many systems, it

seems appropriate to consider the possibility of reading and writing data produced with

the pandas library during data analysis.

First, if you have MongoDB installed on your PC, you can start the service to point to

a given directory.

mongod --dbpath C:\MongoDB_data

Now that the service is listening on port 27017, you can connect to this database

using the official driver for MongoDB: pymongo.

>>> import pymongo

>>> client = MongoClient('localhost',27017)

A single instance of MongoDB is able to support multiple databases at the same

time. So now you need to point to a specific database.

>>> db = client.mydatabase

>>> db

Database(MongoClient('localhost', 27017), u'mycollection')

In order to refer to this object, you can also use

>>> client['mydatabase']

Database(MongoClient('localhost', 27017), u'mydatabase')

Now that you have defined the database, you have to define the collection. The

collection is a group of documents stored in MongoDB and can be considered the

equivalent of the tables in an SQL database.

>>> collection = db.mycollection

>>> db['mycollection']

Collection(Database(MongoClient('localhost', 27017), u'mydatabase'),

u'mycollection')

>>> collection

Collection(Database(MongoClient('localhost', 27017), u'mydatabase'),

u'mycollection')

Chapter 5 pandas: reading and Writing data

179

Now it is the time to load the data in the collection. Create a DataFrame.

>>> frame = pd.DataFrame(np.arange(20).reshape(4,5),

... columns=['white','red','blue','black','green'])

>>> frame

 white red blue black green

0 0 1 2 3 4

1 5 6 7 8 9

2 10 11 12 13 14

3 15 16 17 18 19

Before being added to a collection, it must be converted into a JSON format. The

conversion process is not as direct as you might imagine; this is because you need to

set the data to be recorded on DB in order to be re-extract as DataFrame as fairly and as

simply as possible.

>>> import json

>>> record = json.loads(frame.T.to_json()).values()

>>> record

[{u'blue': 7, u'green': 9, u'white': 5, u'black': 8, u'red': 6},

{u'blue': 2, u'green': 4, u'white':

 0, u'black': 3, u'red': 1}, {u'blue': 17, u'green': 19, u'white': 15,

u'black': 18, u'red': 16}, {u

'blue': 12, u'green': 14, u'white': 10, u'black': 13, u'red': 11}]

Now you are finally ready to insert a document in the collection,

and you can do this with the insert() function.

>>> collection.mydocument.insert(record)

[ObjectId('54fc3afb9bfbee47f4260357'), ObjectId('54fc3afb9bfbee47f4260358'),

ObjectId('54fc3afb9bfbee47f4260359'), ObjectId('54fc3afb9bfbee47f426035a')]

As you can see, you have an object for each line recorded. Now that the data has

been loaded into the document within the MongoDB database, you can execute

the reverse process, i.e., reading data in a document and then converting them to a

dataframe.

Chapter 5 pandas: reading and Writing data

180

>>> cursor = collection['mydocument'].find()

>>> dataframe = (list(cursor))

>>> del dataframe['_id']

>>> dataframe

 black blue green red white

0 8 7 9 6 5

1 3 2 4 1 0

2 18 17 19 16 15

3 13 12 14 11 10

You have removed the column containing the ID numbers for the internal reference

of MongoDB.

 Conclusions
In this chapter, you saw how to use the features of the I/O API of the pandas library in

order to read and write data to files and databases while preserving the structure of the

dataframes. In particular, several modes of writing and reading data according to the

type of format were illustrated.

In the last part of the chapter, you saw how to interface to the most popular models of

databases to record and/or read data into it directly as a dataframe ready to be processed

with the pandas tools.

In the next chapter, you’ll see the most advanced features of the library pandas.

Complex instruments like the GroupBy and other forms of data processing are discussed

in detail.

Chapter 5 pandas: reading and Writing data

181
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_6

CHAPTER 6

pandas in Depth: Data
Manipulation
In the previous chapter you saw how to acquire data from data sources such as

databases and files. Once you have the data in the dataframe format, they are ready to be

manipulated. It’s important to prepare the data so that they can be more easily subjected

to analysis and manipulation. Especially in preparation for the next phase, the data must

be ready for visualization.

In this chapter you will go in depth into the functionality that the pandas library

offers for this stage of data analysis. The three phases of data manipulation will be

treated individually, illustrating the various operations with a series of examples and on

how best to use the functions of this library for carrying out such operations. The three

phases of data manipulation are:

• Data preparation

• Data transformation

• Data aggregation

 Data Preparation
Before you start manipulating data, it is necessary to prepare the data and assemble

them in the form of data structures such that they can be manipulated later with the

tools made available by the pandas library. The different procedures for data preparation

are listed here.

• Loading

• Assembling

182

• Merging

• Concatenating

• Combining

• Reshaping (pivoting)

• Removing

The previous chapter covered loading. In the loading phase, there is also that part

of the preparation that concerns the conversion from many different formats into a data

structure such as a dataframe. But even after you have the data, probably from different

sources and formats, and unified it into a dataframe, you will need to perform further

operations of preparation. In this chapter, and in particular in this section, you’ll see how

to perform all the operations necessary to get the data into a unified data structure.

The data contained in the pandas objects can be assembled in different ways:

• Merging—The pandas.merge() function connects the rows in a

dataframe based on one or more keys. This mode is very familiar

to those who are confident with the SQL language, since it also

implements join operations.

• Concatenating—The pandas.concat() function concatenates the

objects along an axis.

• Combining—The pandas.DataFrame.combine_first() function

is a method that allows you to connect overlapped data in order to

fill in missing values in a data structure by taking data from another

structure.

Furthermore, part of the preparation process is also pivoting, which consists of the

exchange between rows and columns.

 Merging
The merging operation, which corresponds to the JOIN operation for those who are

familiar with SQL, consists of a combination of data through the connection of rows

using one or more keys.

Chapter 6 pandas in depth: data Manipulation

183

In fact, anyone working with relational databases usually uses the JOIN query with

SQL to get data from different tables using some reference values (keys) shared between

them. On the basis of these keys, it is possible to obtain new data in a tabular form as the

result of the combination of other tables. This operation with the library pandas is called

merging, and merge() is the function to perform this kind of operation.

First, you have to import the pandas library and define two dataframes that will serve

as examples for this section.

>>> import numpy as np

>>> import pandas as pd

>>> frame1 = pd.DataFrame({'id':['ball','pencil','pen','mug','ashtray'],

... 'price': [12.33,11.44,33.21,13.23,33.62]})

>>> frame1

 id price

0 ball 12.33

1 pencil 11.44

2 pen 33.21

3 mug 13.23

4 ashtray 33.62

>>> frame2 = pd.DataFrame({'id':['pencil','pencil','ball','pen'],

... 'color': ['white','red','red','black']})

>>> frame2

 color id

0 white pencil

1 red pencil

2 red ball

3 black pen

Carry out the merging by applying the merge() function to the two dataframe objects.

>>> pd.merge(frame1,frame2)

 id price color

0 ball 12.33 red

1 pencil 11.44 white

2 pencil 11.44 red

3 pen 33.21 black

Chapter 6 pandas in depth: data Manipulation

184

As you can see from the result, the returned dataframe consists of all rows that have

an ID in common. In addition to the common column, the columns from the first and

the second dataframe are added.

In this case, you used the merge() function without specifying any column explicitly.

In fact, in most cases you need to decide which is the column on which to base the

merging.

To do this, add the on option with the column name as the key for the merging.

>>> frame1 = pd.DataFrame({'id':['ball','pencil','pen','mug','ashtray'],

... 'color': ['white','red','red','black','green'],

... 'brand': ['OMG','ABC','ABC','POD','POD']})

>>> frame1

 brand color id

0 OMG white ball

1 ABC red pencil

2 ABC red pen

3 POD black mug

4 POD green ashtray

>>> frame2 = pd.DataFrame({'id':['pencil','pencil','ball','pen'],

... 'brand': ['OMG','POD','ABC','POD']})

>>> frame2

 brand id

0 OMG pencil

1 POD pencil

2 ABC ball

3 POD pen

Now in this case you have two dataframes having columns with the same name. So if

you launch a merge, you do not get any results.

>>> pd.merge(frame1,frame2)

Empty DataFrame

Columns: [brand, color, id]

Index: []

Chapter 6 pandas in depth: data Manipulation

185

It is necessary to explicitly define the criteria for merging that pandas must follow,

specifying the name of the key column in the on option.

>>> pd.merge(frame1,frame2,on='id')

 brand_x color id brand_y

0 OMG white ball ABC

1 ABC red pencil OMG

2 ABC red pencil POD

3 ABC red pen POD

>>> pd.merge(frame1,frame2,on='brand')

 brand color id_x id_y

0 OMG white ball pencil

1 ABC red pencil ball

2 ABC red pen ball

3 POD black mug pencil

4 POD black mug pen

5 POD green ashtray pencil

6 POD green ashtray pen

As expected, the results vary considerably depending on the criteria of merging.

Often, however, the opposite problem arises, that is, to have two dataframes in which

the key columns do not have the same name. To remedy this situation, you have to use

the left_on and right_on options, which specify the key column for the first and for the

second dataframe. Now you can see an example.

>>> frame2.columns = ['brand','sid']

>>> frame2

 brand sid

0 OMG pencil

1 POD pencil

2 ABC ball

3 POD pen

>>> pd.merge(frame1, frame2, left_on='id', right_on='sid')

 brand_x color id brand_y sid

0 OMG white ball ABC ball

1 ABC red pencil OMG pencil

2 ABC red pencil POD pencil

3 ABC red pen POD pen

Chapter 6 pandas in depth: data Manipulation

186

By default, the merge() function performs an inner join; the keys in the result are the

result of an intersection.

Other possible options are the left join, the right join, and the outer join. The outer

join produces the union of all keys, combining the effect of a left join with a right join. To

select the type of join you have to use the how option.

>>> frame2.columns = ['brand','id']

>>> pd.merge(frame1,frame2,on='id')

 brand_x color id brand_y

0 OMG white ball ABC

1 ABC red pencil OMG

2 ABC red pencil POD

3 ABC red pen POD

>>> pd.merge(frame1,frame2,on='id',how='outer')

 brand_x color id brand_y

0 OMG white ball ABC

1 ABC red pencil OMG

2 ABC red pencil POD

3 ABC red pen POD

4 POD black mug NaN

5 POD green ashtray NaN

>>> pd.merge(frame1,frame2,on='id',how='left')

 brand_x color id brand_y

0 OMG white ball ABC

1 ABC red pencil OMG

2 ABC red pencil POD

3 ABC red pen POD

4 POD black mug NaN

5 POD green ashtray NaN

>>> pd.merge(frame1,frame2,on='id',how='right')

 brand_x color id brand_y

0 OMG white ball ABC

1 ABC red pencil OMG

2 ABC red pencil POD

3 ABC red pen POD

Chapter 6 pandas in depth: data Manipulation

187

To merge multiple keys, you simply add a list to the on option.

>>> pd.merge(frame1,frame2,on=['id','brand'],how='outer')

 brand color id

0 OMG white ball

1 ABC red pencil

2 ABC red pen

3 POD black mug

4 POD green ashtray

5 OMG NaN pencil

6 POD NaN pencil

7 ABC NaN ball

8 POD NaN pen

 Merging on an Index

In some cases, instead of considering the columns of a dataframe as keys, indexes could

be used as keys for merging. Then in order to decide which indexes to consider, you

set the left_index or right_index options to True to activate them, with the ability to

activate them both.

>>> pd.merge(frame1,frame2,right_index=True, left_index=True)

 brand_x color id_x brand_y id_y

0 OMG white ball OMG pencil

1 ABC red pencil POD pencil

2 ABC red pen ABC ball

3 POD black mug POD pen

But the dataframe objects have a join() function, which is much more convenient

when you want to do the merging by indexes. It can also be used to combine many

dataframe objects having the same or the same indexes but with no columns overlapping.

In fact, if you launch

>>> frame1.join(frame2)

Chapter 6 pandas in depth: data Manipulation

188

You will get an error code because some columns in frame1 have the same name as

frame2. Then rename the columns in frame2 before launching the join() function.

>>> frame2.columns = ['brand2','id2']

>>> frame1.join(frame2)

 brand color id brand2 id2

0 OMG white ball OMG pencil

1 ABC red pencil POD pencil

2 ABC red pen ABC ball

3 POD black mug POD pen

4 POD green ashtray NaN NaN

Here you've performed a merge, but based on the values of the indexes instead of

the columns. This time there is also the index 4 that was present only in frame1, but the

values corresponding to the columns of frame2 report NaN as a value.

 Concatenating
Another type of data combination is referred to as concatenation. NumPy provides a

concatenate() function to do this kind of operation with arrays.

>>> array1 = np.arange(9).reshape((3,3))

>>> array1

array([[0, 1, 2],

 [3, 4, 5],

 [6, 7, 8]])

>>> array2 = np.arange(9).reshape((3,3))+6

>>> array2

array([[6, 7, 8],

 [9, 10, 11],

 [12, 13, 14]])

>>> np.concatenate([array1,array2],axis=1)

array([[0, 1, 2, 6, 7, 8],

 [3, 4, 5, 9, 10, 11],

 [6, 7, 8, 12, 13, 14]])

Chapter 6 pandas in depth: data Manipulation

189

>>> np.concatenate([array1,array2],axis=0)

array([[0, 1, 2],

 [3, 4, 5],

 [6, 7, 8],

 [6, 7, 8],

 [9, 10, 11],

 [12, 13, 14]])

With the pandas library and its data structures like series and dataframe, having

labeled axes allows you to further generalize the concatenation of arrays. The concat()

function is provided by pandas for this kind of operation.

>>> ser1 = pd.Series(np.random.rand(4), index=[1,2,3,4])

>>> ser1

1 0.636584

2 0.345030

3 0.157537

4 0.070351

dtype: float64

>>> ser2 = pd.Series(np.random.rand(4), index=[5,6,7,8])

>>> ser2

5 0.411319

6 0.359946

7 0.987651

8 0.329173

dtype: float64

>>> pd.concat([ser1,ser2])

1 0.636584

2 0.345030

3 0.157537

4 0.070351

5 0.411319

6 0.359946

7 0.987651

8 0.329173

dtype: float64

Chapter 6 pandas in depth: data Manipulation

190

By default, the concat() function works on axis = 0, having as a returned object a

series. If you set the axis = 1, then the result will be a dataframe.

>>> pd.concat([ser1,ser2],axis=1)

 0 1

1 0.636584 NaN

2 0.345030 NaN

3 0.157537 NaN

4 0.070351 NaN

5 NaN 0.411319

6 NaN 0.359946

7 NaN 0.987651

8 NaN 0.329173

The problem with this kind of operation is that the concatenated parts are not

identifiable in the result. For example, you want to create a hierarchical index on the axis

of concatenation. To do this, you have to use the keys option.

>>> pd.concat([ser1,ser2], keys=[1,2])

1 1 0.636584

 2 0.345030

 3 0.157537

 4 0.070351

2 5 0.411319

 6 0.359946

 7 0.987651

 8 0.329173

dtype: float64

In the case of combinations between series along the axis = 1 the keys become the

column headers of the dataframe.

>>> pd.concat([ser1,ser2], axis=1, keys=[1,2])

 1 2

1 0.636584 NaN

2 0.345030 NaN

3 0.157537 NaN

Chapter 6 pandas in depth: data Manipulation

191

4 0.070351 NaN

5 NaN 0.411319

6 NaN 0.359946

7 NaN 0.987651

8 NaN 0.329173

So far you have seen the concatenation applied to the series, but the same logic can

be applied to the dataframe.

>>> frame1 = pd.DataFrame(np.random.rand(9).reshape(3,3), index=[1,2,3],

columns=['A','B','C'])

>>> frame2 = pd.DataFrame(np.random.rand(9).reshape(3,3), index=[4,5,6],

columns=['A','B','C'])

>>> pd.concat([frame1, frame2])

 A B C

1 0.400663 0.937932 0.938035

2 0.202442 0.001500 0.231215

3 0.940898 0.045196 0.723390

4 0.568636 0.477043 0.913326

5 0.598378 0.315435 0.311443

6 0.619859 0.198060 0.647902

>>> pd.concat([frame1, frame2], axis=1)

 A B C A B C

1 0.400663 0.937932 0.938035 NaN NaN NaN

2 0.202442 0.001500 0.231215 NaN NaN NaN

3 0.940898 0.045196 0.723390 NaN NaN NaN

4 NaN NaN NaN 0.568636 0.477043 0.913326

5 NaN NaN NaN 0.598378 0.315435 0.311443

6 NaN NaN NaN 0.619859 0.198060 0.647902

 Combining
There is another situation in which there is combination of data that cannot be obtained

either with merging or with concatenation. Take the case in which you want the two

datasets to have indexes that overlap in their entirety or at least partially.

Chapter 6 pandas in depth: data Manipulation

192

One applicable function to series is combine_first(), which performs this kind of

operation along with data alignment.

>>> ser1 = pd.Series(np.random.rand(5),index=[1,2,3,4,5])

>>> ser1

1 0.942631

2 0.033523

3 0.886323

4 0.809757

5 0.800295

dtype: float64

>>> ser2 = pd.Series(np.random.rand(4),index=[2,4,5,6])

>>> ser2

2 0.739982

4 0.225647

5 0.709576

6 0.214882

dtype: float64

>>> ser1.combine_first(ser2)

1 0.942631

2 0.033523

3 0.886323

4 0.809757

5 0.800295

6 0.214882

dtype: float64

>>> ser2.combine_first(ser1)

1 0.942631

2 0.739982

3 0.886323

4 0.225647

5 0.709576

6 0.214882

dtype: float64

Chapter 6 pandas in depth: data Manipulation

193

Instead, if you want a partial overlap, you can specify only the portion of the series

you want to overlap.

>>> ser1[:3].combine_first(ser2[:3])

1 0.942631

2 0.033523

3 0.886323

4 0.225647

5 0.709576

dtype: float64

 Pivoting
In addition to assembling the data in order to unify the values collected from different

sources, another fairly common operation is pivoting. In fact, arrangement of the values

by row or by column is not always suited to your goals. Sometimes you would like to

rearrange the data by column values on rows or vice versa.

 Pivoting with Hierarchical Indexing

You have already seen that a dataframe can support hierarchical indexing. This feature

can be exploited to rearrange the data in a dataframe. In the context of pivoting, you

have two basic operations:

• Stacking—Rotates or pivots the data structure converting columns

to rows

• Unstacking—Converts rows into columns

>>> frame1 = pd.DataFrame(np.arange(9).reshape(3,3),

... index=['white','black','red'],

... columns=['ball','pen','pencil'])

>>> frame1

 ball pen pencil

white 0 1 2

black 3 4 5

red 6 7 8

Chapter 6 pandas in depth: data Manipulation

194

Using the stack() function on the dataframe, you will get the pivoting of the

columns in rows, thus producing a series:

>>> ser5 = frame1.stack()

white ball 0

 pen 1

 pencil 2

black ball 3

 pen 4

 pencil 5

red ball 6

 pen 7

 pencil 8

dtype: int32

From this hierarchically indexed series, you can reassemble the dataframe into a

pivoted table by use of the unstack() function.

>>> ser5.unstack()

 ball pen pencil

white 0 1 2

black 3 4 5

red 6 7 8

You can also do the unstack on a different level, specifying the number of levels or its

name as the argument of the function.

>>> ser5.unstack(0)

 white black red

ball 0 3 6

pen 1 4 7

pencil 2 5 8

Chapter 6 pandas in depth: data Manipulation

195

 Pivoting from “Long” to “Wide” Format

The most common way to store datasets is produced by the punctual registration of data

that will fill a line of the text file, for example, CSV, or a table of a database. This happens

especially when you have instrumental readings, calculation results iterated over time, or

the simple manual input of a series of values. A similar case of these files is for example

the logs file, which is filled line by line by accumulating data in it.

The peculiar characteristic of this type of dataset is to have entries on various

columns, often duplicated in subsequent lines. Always remaining in tabular format of

data, when you are in such cases you can refer them to as long or stacked format.

To get a clearer idea about that, consider the following dataframe.

>>> longframe = pd.DataFrame({ 'color':['white','white','white',

... 'red','red','red',

... 'black','black','black'],

... 'item':['ball','pen','mug',

... 'ball','pen','mug',

... 'ball','pen','mug'],

... 'value': np.random.rand(9)})

>>> longframe

 color item value

0 white ball 0.091438

1 white pen 0.495049

2 white mug 0.956225

3 red ball 0.394441

4 red pen 0.501164

5 red mug 0.561832

6 black ball 0.879022

7 black pen 0.610975

8 black mug 0.093324

This mode of data recording has some disadvantages. One, for example, is the

multiplicity and repetition of some fields. Considering the columns as keys, the data in

this format will be difficult to read, especially in fully understanding the relationships

between the key values and the rest of the columns.

Chapter 6 pandas in depth: data Manipulation

196

Instead of the long format, there is another way to arrange the data in a table that is

called wide. This mode is easier to read, allowing easy connection with other tables, and

it occupies much less space. So in general it is a more efficient way of storing the data,

although less practical, especially if during the filling of the data.

As a criterion, select a column, or a set of them, as the primary key; then, the values

contained in it must be unique.

In this regard, pandas gives you a function that allows you to make a transformation

of a dataframe from the long type to the wide type. This function is pivot() and it

accepts as arguments the column, or columns, which will assume the role of key.

Starting from the previous example, you choose to create a dataframe in wide format

by choosing the color column as the key, and item as a second key, the values of which

will form the new columns of the dataframe.

>>> wideframe = longframe.pivot('color','item')

>>> wideframe

 value

item ball mug pen

color

black 0.879022 0.093324 0.610975

red 0.394441 0.561832 0.501164

white 0.091438 0.956225 0.495049

As you can now see, in this format, the dataframe is much more compact and the

data contained in it are much more readable.

 Removing
The last stage of data preparation is the removal of columns and rows. You have already

seen this part in Chapter 4. However, for completeness, the description is reiterated here.

Define a dataframe by way of example.

>>> frame1 = pd.DataFrame(np.arange(9).reshape(3,3),

... index=['white','black','red'],

... columns=['ball','pen','pencil'])

Chapter 6 pandas in depth: data Manipulation

197

>>> frame1

 ball pen pencil

white 0 1 2

black 3 4 5

red 6 7 8

In order to remove a column, you simply use the del command applied to the

dataframe with the column name specified.

>>> del frame1['ball']

>>> frame1

 pen pencil

white 1 2

black 4 5

red 7 8

Instead, to remove an unwanted row, you have to use the drop() function with the

label of the corresponding index as an argument.

>>> frame1.drop('white')

 pen pencil

black 4 5

red 7 8

 Data Transformation
So far you have seen how to prepare data for analysis. This process in effect represents

a reassembly of the data contained in a dataframe, with possible additions by other

dataframe and removal of unwanted parts.

Now we begin the second stage of data manipulation: the data transformation. After

you arrange the form of data and their disposal within the data structure, it is important

to transform their values. In fact, in this section, you will see some common issues and

the steps required to overcome them using functions of the pandas library.

Some of these operations involve the presence of duplicate or invalid values, with

possible removal or replacement. Other operations relate instead by modifying the

indexes. Other steps include handling and processing the numerical values of the data

and strings.

Chapter 6 pandas in depth: data Manipulation

198

 Removing Duplicates
Duplicate rows might be present in a dataframe for various reasons. In dataframes of

enormous size, the detection of these rows can be very problematic. In this case, pandas

provides a series of tools to analyze the duplicate data present in large data structures.

First, create a simple dataframe with some duplicate rows.

>>> dframe = pd.DataFrame({ 'color': ['white','white','red','red','white'],

... 'value': [2,1,3,3,2]})

>>> dframe

 color value

0 white 2

1 white 1

2 red 3

3 red 3

4 white 2

The duplicated() function applied to a dataframe can detect the rows that appear to

be duplicated. It returns a series of Booleans where each element corresponds to a row,

with True if the row is duplicated (i.e., only the other occurrences, not the first), and with

False if there are no duplicates in the previous elements.

>>> dframe.duplicated()

0 False

1 False

2 False

3 True

4 True

dtype: bool

Having a Boolean series as a return value can be useful in many cases, especially

for the filtering. In fact, if you want to know which are the duplicate rows, just type the

following:

>>> dframe[dframe.duplicated()]

 color value

3 red 3

4 white 2

Chapter 6 pandas in depth: data Manipulation

199

Generally, all duplicated rows are to be deleted from the dataframe; to do that,

pandas provides the drop_duplicates() function, which returns the dataframes without

duplicate rows.

>>> dframe[dframe.duplicated()]

 color value

3 red 3

4 white 2

 Mapping
The pandas library provides a set of functions which, as you shall see in this section,

exploit mapping to perform some operations. Mapping is nothing more than the

creation of a list of matches between two different values, with the ability to bind a value

to a particular label or string.

To define mapping there is no better object than dict objects.

map = {

 'label1' : 'value1,

 'label2' : 'value2,

 ...

}

The functions that you will see in this section perform specific operations, but they

all accept a dict object.

• replace()—Replaces values

• map()—Creates a new column

• rename()—Replaces the index values

 Replacing Values via Mapping

Often in the data structure that you have assembled there are values that do not meet

your needs. For example, the text may be in a foreign language, or may be a synonym

of another value, or may not be expressed in the desired shape. In such cases, a replace

operation of various values is often a necessary process.

Chapter 6 pandas in depth: data Manipulation

200

Define, as an example, a dataframe containing various objects and colors, including

two colors that are not in English. Often during the assembly operations is likely to keep

maintaining data with values in an undesirable form.

>>> frame = pd.DataFrame({ 'item':['ball','mug','pen','pencil','ashtray'],

... 'color':['white','rosso','verde','black','yellow'],

 'price':[5.56,4.20,1.30,0.56,2.75]})

>>> frame

 color item price

0 white ball 5.56

1 rosso mug 4.20

2 verde pen 1.30

3 black pencil 0.56

4 yellow ashtray 2.75

To be able to replace the incorrect values with new values, it is necessary to define a

mapping of correspondences, containing as a key the new values.

>>> newcolors = {

... 'rosso': 'red',

... 'verde': 'green'

... }

Now the only thing you can do is use the replace() function with the mapping as an

argument.

>>> frame.replace(newcolors)

 color item price

0 white ball 5.56

1 red mug 4.20

2 green pen 1.30

3 black pencil 0.56

4 yellow ashtray 2.75

As you can see from the result, the two colors have been replaced with the correct

values within the dataframe. A common case, for example, is the replacement of NaN

values with another value, for example 0. You can use replace(), which performs its job

very well.

Chapter 6 pandas in depth: data Manipulation

201

>>> ser = pd.Series([1,3,np.nan,4,6,np.nan,3])

>>> ser

0 1.0

1 3.0

2 NaN

3 4.0

4 6.0

5 NaN

6 3.0

dtype: float64

>>> ser.replace(np.nan,0)

0 1.0

1 3.0

2 0.0

3 4.0

4 6.0

5 0.0

6 3.0

dtype: float64

 Adding Values via Mapping

In the previous example, you saw how to substitute values by mapping correspondences.

In this case you continue to exploit the mapping of values with another example. In this

case you are exploiting mapping to add values in a column depending on the values

contained in another. The mapping will always be defined separately.

>>> frame = pd.DataFrame({ 'item':['ball','mug','pen','pencil','ashtray'],

... 'color':['white','red','green','black','yellow']})

>>> frame

 color item

0 white ball

1 red mug

2 green pen

3 black pencil

4 yellow ashtray

Chapter 6 pandas in depth: data Manipulation

202

Let’s suppose you want to add a column to indicate the price of the item shown

in the dataframe. Before you do this, it is assumed that you have a price list available

somewhere, in which the price for each type of item is described. Define then a dict

object that contains a list of prices for each type of item.

>>> prices = {

... 'ball' : 5.56,

... 'mug' : 4.20,

... 'bottle' : 1.30,

... 'scissors' : 3.41,

... 'pen' : 1.30,

... 'pencil' : 0.56,

... 'ashtray' : 2.75

... }

The map() function applied to a series or to a column of a dataframe accepts a

function or an object containing a dict with mapping. So in your case you can apply

the mapping of the prices on the column item, making sure to add a column to the price

dataframe.

>>> frame['price'] = frame['item'].map(prices)

>>> frame

 color item price

0 white ball 5.56

1 red mug 4.20

2 green pen 1.30

3 black pencil 0.56

4 yellow ashtray 2.75

 Rename the Indexes of the Axes

In a manner very similar to what you saw for the values contained within the series and

the dataframe, even the axis label can be transformed in a very similar way using the

mapping. So to replace the label indexes, pandas provides the rename() function, which

takes the mapping as an argument, that is, a dict object.

Chapter 6 pandas in depth: data Manipulation

203

>>> frame

 color item price

0 white ball 5.56

1 red mug 4.20

2 green pen 1.30

3 black pencil 0.56

4 yellow ashtray 2.75

>>> reindex = {

... 0: 'first',

... 1: 'second',

... 2: 'third',

... 3: 'fourth',

... 4: 'fifth'}

>>> frame.rename(reindex)

 color item price

first white ball 5.56

second red mug 4.20

third green pen 1.30

fourth black pencil 0.56

fifth yellow ashtray 2.75

As you can see, by default, the indexes are renamed. If you want to rename columns

you must use the columns option. This time you assign various mapping explicitly to the

two index and columns options.

>>> recolumn = {

... 'item':'object',

... 'price': 'value'}

>>> frame.rename(index=reindex, columns=recolumn)

 color object value

first white ball 5.56

second red mug 4.20

third green pen 1.30

fourth black pencil 0.56

fifth yellow ashtray 2.75

Chapter 6 pandas in depth: data Manipulation

204

Also here, for the simplest cases in which you have a single value to be replaced, you

can avoid having to write and assign many variables.

>>> frame.rename(index={1:'first'}, columns={'item':'object'})

 color object price

0 white ball 5.56

first red mug 4.20

2 green pen 1.30

3 black pencil 0.56

4 yellow ashtray 2.75

So far you have seen that the rename() function returns a dataframe with the

changes, leaving unchanged the original dataframe. If you want the changes to take

effect on the object on which you call the function, you will set the inplace option to

True.

>>> frame.rename(columns={'item':'object'}, inplace=True)

>>> frame

 color object price

0 white ball 5.56

1 red mug 4.20

2 green pen 1.30

3 black pencil 0.56

4 yellow ashtray 2.75

 Discretization and Binning
A more complex process of transformation that you will see in this section is

discretization. Sometimes it can be used, especially in some experimental cases, to

handle large quantities of data generated in sequence. To carry out an analysis of the

data, however, it is necessary to transform this data into discrete categories, for example,

by dividing the range of values of such readings into smaller intervals and counting the

occurrence or statistics in them. Another case might be when you have a huge number

of samples due to precise readings on a population. Even here, to facilitate analysis of

the data, it is necessary to divide the range of values into categories and then analyze the

occurrences and statistics related to each.

Chapter 6 pandas in depth: data Manipulation

205

In your case, for example, you may have a reading of an experimental value between

0 and 100. These data are collected in a list.

>>> results = [12,34,67,55,28,90,99,12,3,56,74,44,87,23,49,89,87]

You know that the experimental values have a range from 0 to 100; therefore you

can uniformly divide this interval, for example, into four equal parts, i.e., bins. The first

contains the values between 0 and 25, the second between 26 and 50, the third between

51 and 75, and the last between 76 and 100.

To do this binning with pandas, first you have to define an array containing the

values of separation of bin:

>>> bins = [0,25,50,75,100]

Then you use a special function called cut() and apply it to the array of results also

passing the bins.

>>> cat = pd.cut(results, bins)

>>> cat

 (0, 25]

 (25, 50]

 (50, 75]

 (50, 75]

 (25, 50]

 (75, 100]

 (75, 100]

 (0, 25]

 (0, 25]

 (50, 75]

 (50, 75]

 (25, 50]

 (75, 100]

 (0, 25]

 (25, 50]

 (75, 100]

 (75, 100]

Levels (4): Index(['(0, 25]', '(25, 50]', '(50, 75]', '(75, 100]'],

dtype=object)

Chapter 6 pandas in depth: data Manipulation

206

The object returned by the cut() function is a special object of Categorical type. You

can consider it as an array of strings indicating the name of the bin. Internally it contains

a categories array indicating the names of the different internal categories and a codes

array that contains a list of numbers equal to the elements of results (i.e., the array

subjected to binning). The number corresponds to the bin to which the corresponding

element of results is assigned.

>>> cat.categories

IntervalIndex([0, 25], (25, 50], (50, 75], (75, 100]]

 closed='right'

 dtype='interval[int64]')

>>> cat.codes

array([0, 1, 2, 2, 1, 3, 3, 0, 0, 2, 2, 1, 3, 0, 1, 3, 3], dtype=int8)

Finally to know the occurrences for each bin, that is, how many results fall into each

category, you have to use the value_counts() function.

>>> pd.value_counts(cat)

(75, 100] 5

(0, 25] 4

(25, 50] 4

(50, 75] 4

dtype: int64

As you can see, each class has the lower limit with a bracket and the upper limit

with a parenthesis. This notation is consistent with mathematical notation that is used

to indicate the intervals. If the bracket is square, the number belongs to the range (limit

closed), and if it is round, the number does not belong to the interval (limit open).

You can give names to various bins by calling them first in an array of strings and

then assigning to the labels options inside the cut() function that you have used to

create the Categorical object.

>>> bin_names = ['unlikely','less likely','likely','highly likely']

>>> pd.cut(results, bins, labels=bin_names)

 unlikely

 less likely

 likely

 likely

Chapter 6 pandas in depth: data Manipulation

207

 less likely

 highly likely

 highly likely

 unlikely

 unlikely

 likely

 likely

 less likely

 highly likely

 unlikely

 less likely

 highly likely

 highly likely

Levels (4): Index(['unlikely', 'less likely', 'likely', 'highly likely'],

dtype=object)

If the cut() function is passed as an argument to an integer instead of explicating the

bin edges, this will divide the range of values of the array in many intervals as specified

by the number.

The limits of the interval will be taken by the minimum and maximum of the sample

data, namely, the array subjected to binning.

>>> pd.cut(results, 5)

 (2.904, 22.2]

 (22.2, 41.4]

 (60.6, 79.8]

 (41.4, 60.6]

 (22.2, 41.4]

 (79.8, 99]

 (79.8, 99]

 (2.904, 22.2]

 (2.904, 22.2]

 (41.4, 60.6]

 (60.6, 79.8]

 (41.4, 60.6]

 (79.8, 99]

Chapter 6 pandas in depth: data Manipulation

208

 (22.2, 41.4]

 (41.4, 60.6]

 (79.8, 99]

 (79.8, 99]

Levels (5): Index(['(2.904, 22.2]', '(22.2, 41.4]', '(41.4, 60.6]',

 '(60.6, 79.8]', '(79.8, 99]'], dtype=object)

In addition to cut(), pandas provides another method for binning: qcut(). This

function divides the sample directly into quintiles. In fact, depending on the distribution

of the data sample, by using cut(), you will have a different number of occurrences

for each bin. Instead qcut() will ensure that the number of occurrences for each bin is

equal, but the edges of each bin vary.

>>> quintiles = pd.qcut(results, 5)

>>> quintiles

 [3, 24]

 (24, 46]

 (62.6, 87]

 (46, 62.6]

 (24, 46]

 (87, 99]

 (87, 99]

 [3, 24]

 [3, 24]

 (46, 62.6]

 (62.6, 87]

 (24, 46]

 (62.6, 87]

 [3, 24]

 (46, 62.6]

 (87, 99]

 (62.6, 87]

Levels (5): Index(['[3, 24]', '(24, 46]', '(46, 62.6]', '(62.6, 87]',

 '(87, 99]'], dtype=object)

Chapter 6 pandas in depth: data Manipulation

209

>>> pd.value_counts(quintiles)

[3, 24] 4

(62.6, 87] 4

(87, 99] 3

(46, 62.6] 3

(24, 46] 3

dtype: int64

As you can see, in the case of quintiles, the intervals bounding the bin differ from

those generated by the cut() function. Moreover, if you look at the occurrences for each

bin will find that qcut() tried to standardize the occurrences for each bin, but in the case

of quintiles, the first two bins have an occurrence in more because the number of results

is not divisible by five.

 Detecting and Filtering Outliers
During data analysis, the need to detect the presence of abnormal values in a data

structure often arises. By way of example, create a dataframe with three columns from

1,000 completely random values:

>>> randframe = pd.DataFrame(np.random.randn(1000,3))

With the describe() function you can see the statistics for each column.

>>> randframe.describe()

 0 1 2

count 1000.000000 1000.000000 1000.000000

mean 0.021609 -0.022926 -0.019577

std 1.045777 0.998493 1.056961

min -2.981600 -2.828229 -3.735046

25% -0.675005 -0.729834 -0.737677

50% 0.003857 -0.016940 -0.031886

75% 0.738968 0.619175 0.718702

max 3.104202 2.942778 3.458472

Chapter 6 pandas in depth: data Manipulation

210

For example, you might consider outliers those that have a value greater than three

times the standard deviation. To have only the standard deviation of each column of the

dataframe, use the std() function.

>>> randframe.std()

0 1.045777

1 0.998493

2 1.056961

dtype: float64

Now you apply the filtering of all the values of the dataframe, applying the

corresponding standard deviation for each column. Thanks to the any() function, you

can apply the filter on each column.

>>> randframe[(np.abs(randframe) > (3*randframe.std())).any(1)]

 0 1 2

69 -0.442411 -1.099404 3.206832

576 -0.154413 -1.108671 3.458472

907 2.296649 1.129156 -3.735046

 Permutation
The operations of permutation (random reordering) of a series or the rows of a

dataframe are easy to do using the numpy.random.permutation() function.

For this example, create a dataframe containing integers in ascending order.

>>> nframe = pd.DataFrame(np.arange(25).reshape(5,5))

>>> nframe

 0 1 2 3 4

0 0 1 2 3 4

1 5 6 7 8 9

2 10 11 12 13 14

3 15 16 17 18 19

4 20 21 22 23 24

Chapter 6 pandas in depth: data Manipulation

211

Now create an array of five integers from 0 to 4 arranged in random order with the

permutation() function. This will be the new order in which to set the values of a row of

the dataframe.

>>> new_order = np.random.permutation(5)

>>> new_order

array([2, 3, 0, 1, 4])

Now apply it to the dataframe on all lines, using the take() function.

>>> nframe.take(new_order)

 0 1 2 3 4

2 10 11 12 13 14

3 15 16 17 18 19

0 0 1 2 3 4

1 5 6 7 8 9

4 20 21 22 23 24

As you can see, the order of the rows has changed; now the indices follow the same

order as indicated in the new_order array.

You can submit even a portion of the entire dataframe to a permutation. It generates

an array that has a sequence limited to a certain range, for example, in our case from 2 to

4.

>>> new_order = [3,4,2]

>>> nframe.take(new_order)

 0 1 2 3 4

3 15 16 17 18 19

4 20 21 22 23 24

2 10 11 12 13 14

 Random Sampling
You have just seen how to extract a portion of the dataframe determined by subjecting it

to permutation. Sometimes, when you have a huge dataframe, you may need to sample

it randomly, and the quickest way to do this is by using the np.random.randint()

function.

Chapter 6 pandas in depth: data Manipulation

212

>>> sample = np.random.randint(0, len(nframe), size=3)

>>> sample

array([1, 4, 4])

>>> nframe.take(sample)

 0 1 2 3 4

1 5 6 7 8 9

4 20 21 22 23 24

4 20 21 22 23 24

As you can see from this random sampling, you can get the same sample even more

often.

 String Manipulation
Python is a popular language thanks to its ease of use in the processing of strings and

text. Most operations can easily be made by using built-in functions provided by Python.

For more complex cases of matching and manipulation, it is necessary to use regular

expressions.

 Built-in Methods for String Manipulation
In many cases you have composite strings in which you would like to separate the

various parts and then assign them to the correct variables. The split() function allows

you to separate parts of the text, taking as a reference point a separator, for example, a

comma.

>>> text = '16 Bolton Avenue , Boston'

>>> text.split(',')

['16 Bolton Avenue ', 'Boston']

As you can see in the first element, you have a string with a space character at the

end. To overcome this common problem, you have to use the split() function along

with the strip() function, which trims the whitespace (including newlines).

>>> tokens = [s.strip() for s in text.split(',')]

>>> tokens

['16 Bolton Avenue', 'Boston']

Chapter 6 pandas in depth: data Manipulation

213

The result is an array of strings. If the number of elements is small and always the

same, a very interesting way to make assignments may be this:

>>> address, city = [s.strip() for s in text.split(',')]

>>> address

'16 Bolton Avenue'

>>> city

'Boston'

So far you have seen how to split text into parts, but often you also need the opposite,

namely concatenating various strings between them to form a more extended text.

The most intuitive and simple way is to concatenate the various parts of the text with

the + operator.

>>> address + ',' + city

'16 Bolton Avenue, Boston'

This can be useful when you have only two or three strings to be concatenated. If

you have many parts to be concatenated, a more practical approach in this case is to use

the join() function assigned to the separator character, with which you want to join the

various strings.

>>> strings = ['A+','A','A-','B','BB','BBB','C+']

>>> ';'.join(strings)

'A+;A;A-;B;BB;BBB;C+'

Another category of operations that can be performed on the string is searching for

pieces of text in them, i.e., substrings. Python provides the keyword that represents the

best way of detecting substrings.

>>> 'Boston' in text

True

However, there are two functions that could serve to this purpose: index() and

find().

>>> text.index('Boston')

19

>>> text.find('Boston')

19

Chapter 6 pandas in depth: data Manipulation

214

In both cases, it returns the number of the corresponding characters in the text

where you have the substring. The difference in the behavior of these two functions can

be seen, however, when the substring is not found:

>>> text.index('New York')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: substring not found

>>> text.find('New York')

-1

In fact, the index() function returns an error message, and find() returns -1 if the

substring is not found. In the same area, you can know how many times a character

or combination of characters (substring) occurs within the text. The count() function

provides you with this number.

>>> text.count('e')

2

>>> text.count('Avenue')

1

Another operation that can be performed on strings is replacing or eliminating a

substring (or a single character). In both cases you will use the replace() function,

where if you are prompted to replace a substring with a blank character, the operation

will be equivalent to the elimination of the substring from the text.

>>> text.replace('Avenue','Street')

'16 Bolton Street , Boston'

>>> text.replace('1',")

'16 Bolton Avenue, Boston'

 Regular Expressions
Regular expressions provide a very flexible way to search and match string patterns

within text. A single expression, generically called regex, is a string formed according to

the regular expression language. There is a built-in Python module called re, which is

responsible for the operation of the regex.

Chapter 6 pandas in depth: data Manipulation

215

First of all, when you want to use regular expressions, you will need to import the

module:

>>> import re

The re module provides a set of functions that can be divided into three categories:

• Pattern matching

• Substitution

• Splitting

Now you start with a few examples. For example, the regex for expressing a sequence

of one or more whitespace characters is \s+. As you saw in the previous section, to split

text into parts through a separator character, you used split(). There is a split()

function even for the re module that performs the same operations, only it can accept a

regex pattern as the criteria of separation, which makes it considerably more flexible.

>>> text = "This is an\t odd \n text!"

>>> re.split('\s+', text)

['This', 'is', 'an', 'odd', 'text!']

Let’s analyze more deeply the mechanism of re module. When you call the re.split()

function, the regular expression is first compiled, then subsequently calls the split()

function on the text argument. You can compile the regex function with the re.compile()

function, thus obtaining a reusable object regex and so gaining in terms of CPU cycles.

This is especially true in the operations of iterative search of a substring in a set or an

array of strings.

>>> regex = re.compile('\s+')

So if you make a regex object with the compile() function, you can apply split()

directly to it in the following way.

>>> regex.split(text)

['This', 'is', 'an', 'odd', 'text!']

To match a regex pattern to any other business substrings in the text, you can use

the findall() function. It returns a list of all the substrings in the text that meet the

requirements of the regex.

Chapter 6 pandas in depth: data Manipulation

216

For example, if you want to find in a string all the words starting with “A” uppercase,

or for example, with “a” regardless whether upper- or lowercase, you need to enter thr

following:

>>> text = 'This is my address: 16 Bolton Avenue, Boston'

>>> re.findall('A\w+',text)

['Avenue']

>>> re.findall('[A,a]\w+',text)

['address', 'Avenue']

There are two other functions related to the findall() function—match() and

search(). While findall() returns all matches within a list, the search() function

returns only the first match. Furthermore, the object returned by this function is a

particular object:

>>> re.search('[A,a]\w+',text)

<_sre.SRE_Match object; span=(11, 18), match='address'>

This object does not contain the value of the substring that responds to the regex

pattern, but returns its start and end positions within the string.

>>> search = re.search('[A,a]\w+',text)

>>> search.start()

11

>>> search.end()

18

>>> text[search.start():search.end()]

'address'

The match() function performs matching only at the beginning of the string; if there

is no match to the first character, it goes no farther in research within the string. If you do

not find any match then it will not return any objects.

>>> re.match('[A,a]\w+',text)

>>>

Chapter 6 pandas in depth: data Manipulation

217

If match() has a response, it returns an object identical to what you saw for the

search() function.

>>> re.match('T\w+',text)

<_sre.SRE_Match object; span=(0, 4), match='This'>

>>> match = re.match('T\w+',text)

>>> text[match.start():match.end()]

'This'

 Data Aggregation
The last stage of data manipulation is data aggregation. Data aggregation involves a

transformation that produces a single integer from an array. In fact, you have already

made many operations of data aggregation, for example, when you calculated the sum(),

mean(), and count(). In fact, these functions operate on a set of data and perform a

calculation with a consistent result consisting of a single value. However, a more formal

manner and the one with more control in data aggregation is that which includes the

categorization of a set.

The categorization of a set of data carried out for grouping is often a critical stage

in the process of data analysis. It is a process of transformation since, after the division

into different groups, you apply a function that converts or transforms the data in some

way depending on the group they belong to. Very often the two phases of grouping and

application of a function are performed in a single step.

Also for this part of the data analysis, pandas provides a tool that’s very flexible and

high performance: GroupBy.

Again, as in the case of join, those familiar with relational databases and the SQL

language can find similarities. Nevertheless, languages such as SQL are quite limited

when applied to operations on groups. In fact, given the flexibility of a programming

language like Python, with all the libraries available, especially pandas, you can perform

very complex operations on groups.

Chapter 6 pandas in depth: data Manipulation

218

 GroupBy
Now you will analyze in detail the process of GroupBy and how it works. Generally, it

refers to its internal mechanism as a process called split-apply-combine. In its pattern of

operation you may conceive this process as divided into three phases expressed by three

operations:

• Splitting—Division into groups of datasets

• Applying—Application of a function on each group

• Combining—Combination of all the results obtained by different

groups

Analyze the three different phases (see Figure 6-1). In the first phase, that of splitting,

the data contained within a data structure, such as a series or a dataframe, are divided

into several groups, according to given criteria, which is often linked to indexes or to

certain values in a column. In the jargon of SQL, values contained in this column are

reported as keys. Furthermore, if you are working with two-dimensional objects such as

a dataframe, the grouping criterion may be applied both to the line (axis = 0) for that

column (axis = 1).

Figure 6-1. The split-apply-combine mechanism

Chapter 6 pandas in depth: data Manipulation

219

The second phase, that of applying, consists of applying a function, or better a

calculation expressed precisely by a function, which will produce a new and single value

that’s specific to that group.

The last phase, that of combining, will collect all the results obtained from each

group and combine them to form a new object.

 A Practical Example
You have just seen that the process of data aggregation in pandas is divided into various

phases called split-apply-combine. With these pandas are not expressed explicitly

with the functions as you would expect, but by a groupby() function that generates an

GroupBy object then that is the core of the whole process.

To better understand this mechanism, let’s switch to a practical example. First define

a dataframe containing numeric and string values.

>>> frame = pd.DataFrame({ 'color': ['white','red','green','red','green'],

... 'object': ['pen','pencil','pencil','ashtray','pen'],

... 'price1' : [5.56,4.20,1.30,0.56,2.75],

... 'price2' : [4.75,4.12,1.60,0.75,3.15]})

>>> frame

 color object price1 price2

0 white pen 5.56 4.75

1 red pencil 4.20 4.12

2 green pencil 1.30 1.60

3 red ashtray 0.56 0.75

4 green pen 2.75 3.15

Suppose you want to calculate the average of the price1 column using group labels

listed in the color column. There are several ways to do this. You can for example access

the price1 column and call the groupby() function with the color column.

>>> group = frame['price1'].groupby(frame['color'])

>>> group

<pandas.core.groupby.SeriesGroupBy object at 0x00000000098A2A20>

Chapter 6 pandas in depth: data Manipulation

220

The object that we got is a GroupBy object. In the operation that you just did, there

was not really any calculation; there was just a collection of all the information needed

to calculate the average. What you have done is group, in which all rows having the same

value of color are grouped into a single item.

To analyze in detail how the dataframe was divided into groups of rows, you call the

attribute groups’ GroupBy object.

>>> group.groups

{'green': Int64Index([2, 4], dtype='int64'),

 'red': Int64Index([1, 3], dtype='int64'),

 'white': Int64Index([0], dtype='int64')}

As you can see, each group is listed and explicitly specifies the rows of the dataframe

assigned to each of them. Now it is sufficient to apply the operation on the group to

obtain the results for each individual group.

>>> group.mean()

color

green 2.025

red 2.380

white 5.560

Name: price1, dtype: float64

>>> group.sum()

color

green 4.05

red 4.76

white 5.56

Name: price1, dtype: float64

 Hierarchical Grouping
You have seen how to group the data according to the values of a column as a key choice.

The same thing can be extended to multiple columns, i.e., make a grouping of multiple

keys hierarchical.

Chapter 6 pandas in depth: data Manipulation

221

>>> ggroup = frame['price1'].groupby([frame['color'],frame['object']])

>>> ggroup.groups

{('green', 'pen'): Int64Index([4], dtype='int64'),

 ('green', 'pencil'): Int64Index([2], dtype='int64'),

 ('red', 'ashtray'): Int64Index([3], dtype='int64'),

 ('red', 'pencil'): Int64Index([1], dtype='int64'),

 ('white', 'pen'): Int64Index([0], dtype='int64')}

>>> ggroup.sum()

color object

green pen 2.75

 pencil 1.30

red ashtray 0.56

 pencil 4.20

white pen 5.56

Name: price1, dtype: float64

So far you have applied the grouping to a single column of data, but in reality it can

be extended to multiple columns or to the entire dataframe. Also if you do not need to

reuse the object GroupBy several times, it is convenient to combine in a single passing all

of the grouping and calculation to be done, without defining any intermediate variable.

>>> frame[['price1','price2']].groupby(frame['color']).mean()

 price1 price2

color

green 2.025 2.375

red 2.380 2.435

white 5.560 4.750

>>> frame.groupby(frame['color']).mean()

 price1 price2

color

green 2.025 2.375

red 2.380 2.435

white 5.560 4.750

Chapter 6 pandas in depth: data Manipulation

222

 Group Iteration
The GroupBy object supports the operation of an iteration to generate a sequence of two-

tuples containing the name of the group together with the data portion.

>>> for name, group in frame.groupby('color'):

... print(name)

... print(group)

...

green

 color object price1 price2

2 green pencil 1.30 1.60

4 green pen 2.75 3.15

red

 color object price1 price2

1 red pencil 4.20 4.12

3 red ashtray 0.56 0.75

white

 color object price1 price2

0 white pen 5.56 4.75

In the example you just saw, you only applied the print variable for illustration. In

fact, you replace the printing operation of a variable with the function to be applied on it.

 Chain of Transformations
From these examples, you have seen that for each grouping, when subjected to some

function calculation or other operations in general, regardless of how it was obtained and

the selection criteria, the result will be a data structure series (if we selected a single column

data) or a dataframe, which then retains the index system and the name of the columns.

>>> result1 = frame['price1'].groupby(frame['color']).mean()

>>> type(result1)

<class 'pandas.core.series.Series'>

>>> result2 = frame.groupby(frame['color']).mean()

>>> type(result2)

<class 'pandas.core.frame.DataFrame'>

Chapter 6 pandas in depth: data Manipulation

223

It is therefore possible to select a single column at any point in the various phases

of this process. Here are three cases in which the selection of a single column in three

different stages of the process applies. This example illustrates the great flexibility of this

system of grouping provided by pandas.

>>> frame['price1'].groupby(frame['color']).mean()

color

green 2.025

red 2.380

white 5.560

Name: price1, dtype: float64

>>> frame.groupby(frame['color'])['price1'].mean()

color

green 2.025

red 2.380

white 5.560

Name: price1, dtype: float64

>>> (frame.groupby(frame['color']).mean())['price1']

color

green 2.025

red 2.380

white 5.560

Name: price1, dtype: float64

In addition, after an operation of aggregation, the names of some columns may

not be very meaningful. In fact it is often useful to add a prefix to the column name

that describes the type of business combination. Adding a prefix, instead of completely

replacing the name, is very useful for keeping track of the source data from which they

derive aggregate values. This is important if you apply a process of transformation chain

(a series or dataframe is generated from each other) in which it is important to keep

some reference with the source data.

>>> means = frame.groupby('color').mean().add_prefix('mean_')

>>> means

 mean_price1 mean_price2

Chapter 6 pandas in depth: data Manipulation

224

color

green 2.025 2.375

red 2.380 2.435

white 5.560 4.750

 Functions on Groups
Although many methods have not been implemented specifically for use with GroupBy,

they actually work correctly with data structures as the series. You saw in the previous

section how easy it is to get the series by a GroupBy object, by specifying the name of the

column and then by applying the method to make the calculation. For example, you can

use the calculation of quantiles with the quantiles() function.

>>> group = frame.groupby('color')

>>> group['price1'].quantile(0.6)

color

green 2.170

red 2.744

white 5.560

Name: price1, dtype: float64

You can also define their own aggregation functions. Define the function separately

and then you pass as an argument to the mark() function. For example, you could

calculate the range of the values of each group.

>>> def range(series):

... return series.max() - series.min()

...

>>> group['price1'].agg(range)

color

green 1.45

red 3.64

white 0.00

Name: price1, dtype: float64

Chapter 6 pandas in depth: data Manipulation

225

The agg() function allows you to use aggregate functions on an entire dataframe.

>>> group.agg(range)

 price1 price2

color

green 1.45 1.55

red 3.64 3.37

white 0.00 0.00

You can also use more aggregate functions at the same time, with the mark()

function passing an array containing the list of operations to be done, which will become

the new columns.

>>> group['price1'].agg(['mean','std',range])

 mean std range

color

green 2.025 1.025305 1.45

red 2.380 2.573869 3.64

white 5.560 NaN 0.00

 Advanced Data Aggregation
In this section, you will be introduced to the transform() and apply() functions, which

allow you to perform many kinds of group operations, some very complex.

Now suppose we want to bring together in the same dataframe the following: the

dataframe of origin (the one containing the data) and that obtained by the calculation of

group aggregation, for example, the sum.

>>> frame = pd.DataFrame({ 'color':['white','red','green','red','green'],

... 'price1':[5.56,4.20,1.30,0.56,2.75],

... 'price2':[4.75,4.12,1.60,0.75,3.15]})

>>> frame

 color price1 price2

0 white 5.56 4.75

1 red 4.20 4.12

2 green 1.30 1.60

3 red 0.56 0.75

Chapter 6 pandas in depth: data Manipulation

226

4 green 2.75 3.15

>>> sums = frame.groupby('color').sum().add_prefix('tot_')

>>> sums

 tot_price1 tot_price2

color

green 4.05 4.75

red 4.76 4.87

white 5.56 4.75

>>> merge(frame,sums,left_on='color',right_index=True)

 color price1 price2 tot_price1 tot_price2

0 white 5.56 4.75 5.56 4.75

1 red 4.20 4.12 4.76 4.87

3 red 0.56 0.75 4.76 4.87

2 green 1.30 1.60 4.05 4.75

4 green 2.75 3.15 4.05 4.75

Thanks to merge(), can add the results of the aggregation in each line of the

dataframe to start. But there is another way to do this type of operation. That is by

using transform(). This function performs aggregation as you have seen before, but at

the same time shows the values calculated based on the key value on each line of the

dataframe to start.

>>> frame.groupby('color').transform(np.sum).add_prefix('tot_')

 tot_price1 tot_price2

0 5.56 4.75

1 4.76 4.87

2 4.05 4.75

3 4.76 4.87

4 4.05 4.75

As you can see, the transform() method is a more specialized function that has very

specific requirements: the function passed as an argument must produce a single scalar

value (aggregation) to be broadcasted.

The method to cover more general GroupBy is applicable to apply(). This method

applies in its entirety the split-apply-combine scheme. In fact, this function divides the

object into parts in order to be manipulated, invokes the passage of functions on each

piece, and then tries to chain together the various parts.

Chapter 6 pandas in depth: data Manipulation

227

>>> frame = pd.DataFrame({ 'color':['white','black','white','white','black','black'],

... 'status':['up','up','down','down','down','up'],

... 'value1':[12.33,14.55,22.34,27.84,23.40,18.33],

... 'value2':[11.23,31.80,29.99,31.18,18.25,22.44]})

>>> frame

 color status value1 value2

0 white up 12.33 11.23

1 black up 14.55 31.80

2 white down 22.34 29.99

3 white down 27.84 31.18

4 black down 23.40 18.25

>>> frame.groupby(['color','status']).apply(lambda x: x.max())

 color status value1 value2

color status

black down black down 23.40 18.25

 up black up 18.33 31.80

white down white down 27.84 31.18

 up white up 12.33 11.23

5 black up 18.33 22.44

>>> frame.rename(index=reindex, columns=recolumn)

 color object value

first white ball 5.56

second red mug 4.20

third green pen 1.30

fourth black pencil 0.56

fifth yellow ashtray 2.75

>>> temp = pd.date_range('1/1/2015', periods=10, freq= 'H')

>>> temp

DatetimeIndex(['2015-01-01 00:00:00', '2015-01-01 01:00:00',

 '2015-01-01 02:00:00', '2015-01-01 03:00:00',

 '2015-01-01 04:00:00', '2015-01-01 05:00:00',

 '2015-01-01 06:00:00', '2015-01-01 07:00:00',

 '2015-01-01 08:00:00', '2015-01-01 09:00:00'],

 dtype='datetime64[ns]', freq='H')

Chapter 6 pandas in depth: data Manipulation

228

Length: 10, Freq: H, Timezone: None

>>> timeseries = pd.Series(np.random.rand(10), index=temp)

>>> timeseries

2015-01-01 00:00:00 0.368960

2015-01-01 01:00:00 0.486875

2015-01-01 02:00:00 0.074269

2015-01-01 03:00:00 0.694613

2015-01-01 04:00:00 0.936190

2015-01-01 05:00:00 0.903345

2015-01-01 06:00:00 0.790933

2015-01-01 07:00:00 0.128697

2015-01-01 08:00:00 0.515943

2015-01-01 09:00:00 0.227647

Freq: H, dtype: float64

>>> timetable = pd.DataFrame({'date': temp, 'value1' : np.random.rand(10),

... 'value2' : np.random.rand(10)})

>>> timetable

 date value1 value2

0 2015-01-01 00:00:00 0.545737 0.772712

1 2015-01-01 01:00:00 0.236035 0.082847

2 2015-01-01 02:00:00 0.248293 0.938431

3 2015-01-01 03:00:00 0.888109 0.605302

4 2015-01-01 04:00:00 0.632222 0.080418

5 2015-01-01 05:00:00 0.249867 0.235366

6 2015-01-01 06:00:00 0.993940 0.125965

7 2015-01-01 07:00:00 0.154491 0.641867

8 2015-01-01 08:00:00 0.856238 0.521911

9 2015-01-01 09:00:00 0.307773 0.332822

You then add to the dataframe preceding a column that represents a set of text values

that you will use as key values.

>>> timetable['cat'] = ['up','down','left','left','up','up','down','right',

'right','up']

Chapter 6 pandas in depth: data Manipulation

229

>>> timetable

 date value1 value2 cat

0 2015-01-01 00:00:00 0.545737 0.772712 up

1 2015-01-01 01:00:00 0.236035 0.082847 down

2 2015-01-01 02:00:00 0.248293 0.938431 left

3 2015-01-01 03:00:00 0.888109 0.605302 left

4 2015-01-01 04:00:00 0.632222 0.080418 up

5 2015-01-01 05:00:00 0.249867 0.235366 up

6 2015-01-01 06:00:00 0.993940 0.125965 down

7 2015-01-01 07:00:00 0.154491 0.641867 right

8 2015-01-01 08:00:00 0.856238 0.521911 right

9 2015-01-01 09:00:00 0.307773 0.332822 up

The example shown here, however, has duplicate key values.

 Conclusions
In this chapter, you saw the three basic parts that divide the data manipulation:

preparation, processing, and data aggregation. Thanks to a series of examples, you

learned about a set of library functions that allow pandas to perform these operations.

You saw how to apply these functions on simple data structures so that you can

become familiar with how they work and understand their applicability to more

complex cases.

Eventually, you now have the knowledge you need to prepare a dataset for the next

phase of data analysis: data visualization.

In the next chapter, you will be presented with the Python library matplotlib, which

can convert data structures in any chart.

Chapter 6 pandas in depth: data Manipulation

231
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_7

CHAPTER 7

Data Visualization
with matplotlib
After discussing in the previous chapters Python libraries that were responsible for data

processing, now it is time for you to see a library that takes care of visualization. This

library is matplotlib.

Data visualization is often underestimated in data analysis, but it is actually a

very important factor because incorrect or inefficient data representation can ruin an

otherwise excellent analysis. In this chapter, you will discover the various aspects of the

matplotlib library, including how it is structured, and how to maximize the potential that

it offers.

 The matplotlib Library
matplotlib is a Python library specializing in the development of two-dimensional

charts (including 3D charts). In recent years, it has been widespread in scientific and

engineering circles (http://matplolib.org).

Among all the features that have made it the most used tool in the graphical

representation of data, there are a few that stand out:

• Extreme simplicity in its use

• Gradual development and interactive data visualization

• Expressions and text in LaTeX

• Greater control over graphic elements

• Export to many formats, such as PNG, PDF, SVG, and EPS

http://matplolib.org

232

matplotlib is designed to reproduce as much as possible an environment similar to

MATLAB in terms of both graphical view and syntactic form. This approach has proved

successful, as it has been able to exploit the experience of software (MATLAB) that has

been on the market for several years and is now widespread in all professional technical-

scientific circles. Not only is matplotlib based on a scheme known and quite familiar

to most experts in the field, but also it also exploits those optimizations that over the

years have led to a deducibility and simplicity in its use, which makes this library also

an excellent choice for those approaching data visualization for the first time, especially

those without any experience with applications such as MATLAB or similar.

In addition to simplicity and deducibility, the matplotlib library inherited

interactivity from MATLAB as well. That is, the analyst can insert command after

command to control the gradual development of a graphical representation of data.

This mode is well suited to the more interactive approaches of Python as the IPython

QtConsole and IPython Notebook (see Chapter 2), thus providing an environment

for data analysis that has little to envy from other tools such as Mathematica, IDL, or

MATLAB.

The genius of those who developed this beautiful library was to use and incorporate

the good things currently available and in use in science. This is not only limited, as we

have seen, to the operating mode of MATLAB and similar, but also to models of textual

formatting of scientific expressions and symbols represented by LaTeX. Because of its

great capacity for display and presentation of scientific expressions, LaTeX has been an

irreplaceable element in any scientific publication or documentation, where the need to

visually represent expressions like integrals, summations, and derivatives is mandatory.

Therefore matplotlib integrates this remarkable instrument in order to improve the

representative capacity of charts.

In addition, you must not forget that matplotlib is not a separate application but

a library of a programming language like Python. So it also takes full advantage of the

potential that programming languages offer. matplotlib looks like a graphics library

that allows you to programmatically manage the graphic elements that make up a chart

so that the graphical display can be controlled in its entirety. The ability to program

the graphical representation allows management of the reproducibility of the data

representation across multiple environments and especially when you make changes or

when the data is updated.

Chapter 7 Data Visualization with matplotlib

233

Moreover, since matplotlib is a Python library, it allows you to exploit the full

potential of other libraries available to any developer that implements with this

language. In fact, with regard to data analysis, matplotlib normally cooperates with a set

of other libraries such as NumPy and pandas, but many other libraries can be integrated

without any problem.

Finally, graphical representations obtained through encoding with this library can be

exported in the most common graphic formats (such as PNG and SVG) and then be used

in other applications, documentation, web pages, etc.

 Installation
There are many options for installing the matplotlib library. If you choose to use a

distribution of packages like Anaconda or Enthought Canopy, installing the matplotlib

package is very simple. For example, with the conda package manager, you have to enter

the following:

conda install matplotlib

If you want to directly install this package, the commands to insert vary depending

on the operating system.

On Debian-Ubuntu Linux systems, use this:

sudo apt-get install python-matplotlib

On Fedora-Redhat Linux systems, use this:

sudo yum install python-matplotlib

On Windows or MacOS, you should use pip for installing matplotlib.

 The IPython and IPython QtConsole
In order to get familiar with all the tools provided by the Python world, I chose to use

IPython both from a terminal and from the QtConsole. This is because IPython allows

you to exploit the interactivity of its enhanced terminal and, as you will see, IPython

QtConsole also allows you to integrate graphics directly inside the console.

Chapter 7 Data Visualization with matplotlib

234

To run an IPython session, simply run the following command:

ipython

Python 3.6.3 (default, Oct 15 2017, 03:27:45) [MSC v.1900 64 bit (AMD64)]

Type "copyright", "credits" or "license" for more information.

IPython 3.6.3 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

Whereas if you want to run the Jupyter QtConsole with the ability to display graphics

within the line commands of the session, you use:

jupyter qtconsole

A window with a new open IPython session will immediately appear on the screen,

as shown in Figure 7-1.

Figure 7-1. The IPython QtConsole

Chapter 7 Data Visualization with matplotlib

235

However, if you want to continue using a standard Python session you are free to do

so. If you do not like working with IPython and want to continue to use Python from the

terminal, all the examples in this chapter will still be valid.

 The matplotlib Architecture
One of the key tasks that matplotlib must take on is provide a set of functions and tools

that allow representation and manipulation of a Figure (the main object), along with

all internal objects of which it is composed. However, matplotlib not only deals with

graphics but also provides all the tools for the event handling and the ability to animate

graphics. So, thanks to these additional features, matplotlib proves to be capable of

producing interactive charts based on the events triggered by pressing a key on the

keyboard or on mouse movement.

The architecture of matplotlib is logically structured into three layers, which are

placed at three different levels (see Figure 7-2). The communication is unidirectional,

that is, each layer can communicate with the underlying layer, while the lower layers

cannot communicate with the top ones.

Figure 7-2. The three layers of the matplotlib architecture

The three layers are as follows:

• Scripting

• Artist

• Backend

Chapter 7 Data Visualization with matplotlib

236

 Backend Layer
In the diagram of the matplotlib architecture, the layer that works at the lowest level is

the Backend layer. This layer contains the matplotlib APIs, a set of classes that play the

role of implementation of the graphic elements at a low level.

• FigureCanvas is the object that embodies the concept of

drawing area.

• Renderer is the object that draws on FigureCanvas.

• Event is the object that handles user inputs (keyboard and

mouse events).

 Artist Layer
As an intermediate layer, we have a layer called Artist. All the elements that make up a

chart, such as the title, axis labels, markers, etc., are instances of the Artist object. Each of

these instances plays its role within a hierarchical structure (as shown in Figure 7-3).

Figure 7-3. Each element of a chart corresponds to an instance of Artist structured
in a hierarchy

Chapter 7 Data Visualization with matplotlib

237

There are two Artist classes: primitive and composite.

• The primitive artists are individual objects that constitute the basic

elements to form a graphical representation in a plot, for example a

Line2D, or as a geometric figure such as a Rectangle or Circle, or even

pieces of text.

• The composite artists are those graphic elements present in a chart

that are composed of several base elements, namely, the primitive

artists. Composite artists are for example the Axis, Ticks, Axes, and

Figures (see Figure 7-4).

Generally, working at this level you will have to deal often with objects in higher

hierarchy as Figure, Axes, and Axis. So it is important to fully understand what these

objects are and what role they play within the graphical representation. Figure 7-4

shows the three main Artist objects (composite artists) that are generally used in all

implementations performed at this level.

Figure 7-4. The three main artist objects in the hierarchy of the Artist layer

• Figure is the object with the highest level in the hierarchy. It

corresponds to the entire graphical representation and generally can

contain many Axes.

Chapter 7 Data Visualization with matplotlib

238

• Axes is generally what you mean as plot or chart. Each Axis object

belongs to only one Figure, and is characterized by two Artist Axis

(three in the three-dimensional case). Other objects, such as the title,

the x label, and the y label, belong to this composite artist.

• Axis objects that take into account the numerical values to be

represented on Axes, define the limits and manage the ticks (the

mark on the axes) and tick labels (the label text represented on each

tick). The position of the tick is adjusted by an object called a Locator

while the formatting tick label is regulated by an object called a

Formatter.

 Scripting Layer (pyplot)
Artist classes and their related functions (the matplotlib API) are particularly suitable to

all developers, especially for those who work on web application servers or develop the

GUI. But for purposes of calculation, and in particular for the analysis and visualization

of data, the scripting layer is best. This layer consists of an interface called pyplot.

 pylab and pyplot
In general there is talk of pylab and pyplot. But what is the difference between these

two packages? Pylab is a module that is installed along with matplotlib, while pyplot

is an internal module of matplotlib. Often you will find references to one or the other

approach.

from pylab import *

and

import matplotlib.pyplot as plt

import numpy as np

Pylab combines the functionality of pyplot with the capabilities of NumPy in a single

namespace, and therefore you do not need to import NumPy separately. Furthermore,

if you import pylab, pyplot and NumPy functions can be called directly without any

reference to a module (namespace), making the environment more similar to MATLAB.

Chapter 7 Data Visualization with matplotlib

239

plot(x,y)

array([1,2,3,4])

Instead of

plt.plot()

np.array([1,2,3,4]

The pyplot package provides the classic Python interface for programming the

matplotlib library, has its own namespace, and requires the import of the NumPy

package separately. This approach is the one chosen for this book; it is the main topic of

this chapter; and it will be used for the rest of the book. In fact this choice is shared and

approved by most Python developers.

 pyplot
The pyplot module is a collection of command-style functions that allow you to use

matplotlib much like MATLAB. Each pyplot function will operate or make some changes

to the Figure object, for example, the creation of the Figure itself, the creation of a

plotting area, representation of a line, decoration of the plot with a label, etc.

Pyplot also is stateful, in that it tracks the status of the current figure and its plotting

area. The functions called act on the current figure.

 A Simple Interactive Chart
To get familiar with the matplotlib library and in a particular way with Pyplot, you will

start creating a simple interactive chart. Using matplotlib, this operation is very simple;

in fact, you can achieve it using only three lines of code.

But first you need to import the pyplot package and rename it as plt.

In [1]: import matplotlib.pyplot as plt

In Python, the constructors generally are not necessary; everything is already

implicitly defined. In fact when you import the package, the plt object with all its

graphics capabilities have already been instantiated and ready to use. In fact, you simply

use the plot() function to pass the values to be plotted.

Chapter 7 Data Visualization with matplotlib

240

Thus, you can simply pass the values that you want to represent as a sequence of

integers.

In [2]: plt.plot([1,2,3,4])

Out[2]: [<matplotlib.lines.Line2D at 0xa3eb438>]

As you can see, a Line2D object has been generated. The object is a line that

represents the linear trend of the points included in the chart.

Now it is all set. You just have to give the command to show the plot using the show()

function.

In [3]: plt.show()

The result will be the one shown in Figure 7-5. It looks just a window, called the

plotting window, with a toolbar and the plot represented within it, just as with MATLAB.

Figure 7-5. The plotting window

Chapter 7 Data Visualization with matplotlib

241

 The Plotting Window
The plotting window is characterized by a toolbar at the top in which there are a series of

buttons.

• Resets the original view

• Goes to the previous/next view

• Pans axes with left mouse, zoom with right

• Zooms to rectangle

• Configures subplots

• Saves/exports the figure

• Edits the axis, curve, and image parameters

The code entered into the IPython console corresponds on the Python console to the

following series of commands:

>>> import matplotlib.pyplot as plt

>>> plt.plot([1,2,3,4])

[<matplotlib.lines.Line2D at 0x0000000007DABFD0>]

>>> plt.show()

If you are using the IPython QtConsole, you may have noticed that after calling the

plot() function the chart is displayed directly without explicitly invoking the show()

function (see Figure 7-6).

Chapter 7 Data Visualization with matplotlib

242

If you pass only a list of numbers or an array to the plt.plot() function, matplotlib

assumes it is the sequence of y values of the chart, and it associates them to the natural

sequence of values x: 0,1,2,3,

Generally a plot represents value pairs (x, y), so if you want to define a chart

correctly, you must define two arrays, the first containing the values on the x-axis and

the second containing the values on the y-axis. Moreover, the plot() function can

accept a third argument, which describes the specifics of how you want the point to be

represented on the chart.

Figure 7-6. The QtConsole shows the chart directly as output

Chapter 7 Data Visualization with matplotlib

243

 Set the Properties of the Plot
As you can see in Figure 7-6, the points were represented by a blue line. In fact, if you do

not specify otherwise, the plot is represented taking into account a default configuration

of the plt.plot() function:

• The size of the axes matches perfectly with the range of the input data

• There is neither a title nor axis labels

• There is no legend

• A blue line connecting the points is drawn

Therefore you need to change this representation to have a real plot in which each

pair of values (x, y) is represented by a red dot (see Figure 7-7).

If you’re working on IPython, close the window to get back to the active prompt for

entering new commands. Then you have to call back the show() function to observe the

changes made to the plot.

In [4]: plt.plot([1,2,3,4],[1,4,9,16],'ro')

Out[4]: [<matplotlib.lines.Line2D at 0x93e6898>]

In [5]: plt.show()

Instead, if you’re working on Jupyter QtConsole you see a different plot for each new

command you enter.

Chapter 7 Data Visualization with matplotlib

244

Figure 7-7. The pairs of (x,y) values are represented in the plot by red circles

Note at this point in the book, you already have a very clear idea about the
difference between the various environments. to avoid confusion from this point,
i will consider the ipython QtConsole as the sole development environment.

Chapter 7 Data Visualization with matplotlib

245

You can define the range both on the x-axis and on the y-axis by defining the details

of a list [xmin, xmax, ymin, ymax] and then passing it as an argument to the axis()

function.

Note in the ipython QtConsole, to generate a chart it is sometimes necessary to
enter more rows of commands. to avoid generating a chart every time you press
enter (start a new line) along with losing the setting previously specified, you have to
press Ctrl+enter. when you want to finally generate the chart, just press enter twice.

You can set several properties, one of which is the title that can be entered using the

title() function.

In [4]: plt.axis([0,5,0,20])

 ...: plt.title('My first plot')

 ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')

Out[4]: [<matplotlib.lines.Line2D at 0x97f1c18>]

In Figure 7-8 you can see how the new settings made the plot more readable. In

fact, the end points of the dataset are now represented within the plot rather than at the

edges. Also the title of the plot is now visible at the top.

Figure 7-8. The plot after the properties have been set

Chapter 7 Data Visualization with matplotlib

246

 matplotlib and NumPy
Even the matplot library, despite being a fully graphical library, has its foundation as

the NumPy library. In fact, you have seen so far how to pass lists as arguments, both to

represent the data and to set the extremes of the axes. Actually, these lists have been

converted internally in NumPy arrays.

Therefore, you can directly enter NumPy arrays as input data. This array of data,

which have been processed by pandas, can be directly used with matplotlib without

further processing.

As an example, you see how it is possible to plot three different trends in the same

plot (see Figure 7-9). You can choose for this example the sin() function belonging to

the math module. So you will need to import it. To generate points following a sinusoidal

trend, you will use the NumPy library. Generate a series of points on the x-axis using the

arange() function, while for the values on the y-axis you will use the map() function to

apply the sin() function on all the items of the array (without using a for loop).

In [5]: import math

In [6]: import numpy as np

In [7]: t = np.arange(0,2.5,0.1)

 ...: y1 = np.sin(math.pi*t)

 ...: y2 = np.sin(math.pi*t+math.pi/2)

 ...: y3 = np.sin(math.pi*t-math.pi/2)

In [8]: plt.plot(t,y1,'b*',t,y2,'g^',t,y3,'ys')

Out[8]:

[<matplotlib.lines.Line2D at 0xcbd2e48>,

 <matplotlib.lines.Line2D at 0xcbe10b8>,

 <matplotlib.lines.Line2D at 0xcbe15c0>]

Chapter 7 Data Visualization with matplotlib

247

Note if you are not using the ipython QtConsole set with matplotlib inline or you
are implementing this code on a simple python session, insert the plt.show()
command at the end of the code to obtain the chart shown in Figure 7-10.

As you can see in Figure 7-9, the plot represents the three different temporal trends

with three different colors and markers. In these cases, when the trend of a function is

so obvious, the plot is perhaps not the most appropriate representation, but it is better

to use the lines (see Figure 7-10). To differentiate the three trends with something other

than color, you can use the pattern composed of different combinations of dots and

dashes (- and .).

In [9]: plt.plot(t,y1,'b--',t,y2,'g',t,y3,'r-.')

Out[9]:

[<matplotlib.lines.Line2D at 0xd1eb550>,

 <matplotlib.lines.Line2D at 0xd1eb780>,

 <matplotlib.lines.Line2D at 0xd1ebd68>]

Note if you are not using the ipython QtConsole set with matplotlib inline or you
are implementing this code on a simple python session, insert the plt.show()
command at the end of the code to obtain the chart shown in Figure 7-10.

Figure 7-9. Three sinusoidal trends phase-shifted by π / 4 represented by markers

Chapter 7 Data Visualization with matplotlib

248

 Using the kwargs
The objects that make up a chart have many attributes that characterize them. These

attributes are all default values, but can be set through the use of keyword args, often

referred as kwargs.

These keywords are passed as arguments to functions. In reference documentation

of the various functions of the matplotlib library, you will always find them referred to as

kwargs in the last position. For example the plot() function that you are using in these

examples is referred to in the following way.

matplotlib.pyplot.plot(*args, **kwargs)

For a practical example, the thickness of a line can be changed if you set the

linewidth keyword (see Figure 7-11).

In [10]: plt.plot([1,2,4,2,1,0,1,2,1,4],linewidth=2.0)

Out[10]: [<matplotlib.lines.Line2D at 0xc909da0>]

Figure 7-10. This chart represents the three sinusoidal patterns with colored lines

Chapter 7 Data Visualization with matplotlib

249

 Working with Multiple Figures and Axes
So far you have seen how all pyplot commands are routed to the display of a single figure.

Actually, matplotlib allows you to manage multiple figures simultaneously, and within

each figure, it offers the ability to view different plots defined as subplots.

So when you are working with pyplot, you must always keep in mind the concept of

the current Figure and current Axes (that is, the plot shown within the figure).

Now you will see an example where two subplots are represented in a single figure.

The subplot() function, in addition to subdividing the figure in different drawing areas,

is used to focus the commands on a specific subplot.

The argument passed to the subplot() function sets the mode of subdivision and

determines which is the current subplot. The current subplot will be the only figure

that will be affected by the commands. The argument of the subplot() function is

composed of three integers. The first number defines how many parts the figure is split

into vertically. The second number defines how many parts the figure is divided into

horizontally. The third issue selects which is the current subplot on which you can direct

commands.

Now you will display two sinusoidal trends (sine and cosine) and the best way to do

that is to divide the canvas vertically in two horizontal subplots (as shown in Figure 7- 12).

So the numbers to pass as an argument are 211 and 212.

Figure 7-11. The thickness of a line can be set directly from the plot() function

Chapter 7 Data Visualization with matplotlib

250

In [11]: t = np.arange(0,5,0.1)

 ... : y1 = np.sin(2*np.pi*t)

 ... : y2 = np.sin(2*np.pi*t)

In [12]: plt.subplot(211)

 ...: plt.plot(t,y1,'b-.')

 ...: plt.subplot(212)

 ...: plt.plot(t,y2,'r--')

Out[12]: [<matplotlib.lines.Line2D at 0xd47f518>]

Figure 7-12. The figure has been divided into two horizontal subplots

Now you do the same thing by dividing the figure in two vertical subplots. The

numbers to be passed as arguments to the subplot() function are 121 and 122

(as shown in Figure 7-13).

In []: t = np.arange(0.,1.,0.05)

 ...: y1 = np.sin(2*np.pi*t)

 ...: y2 = np.cos(2*np.pi*t)

In []: plt.subplot(121)

 ...: plt.plot(t,y1,'b-.')

 ...: plt.subplot(122)

 ...: plt.plot(t,y2,'r--')

Out[94]: [<matplotlib.lines.Line2D at 0xed0c208>]

Chapter 7 Data Visualization with matplotlib

251

 Adding Elements to the Chart
In order to make a chart more informative, many times it is not enough to represent the

data using lines or markers and assign the range of values using two axes. In fact, there

are many other elements that can be added to a chart in order to enrich it with additional

information.

In this section you will see how to add elements to the chart as text labels, a legend,

and so on.

 Adding Text
You’ve already seen how you can add the title to a chart with the title() function. Two

other textual indications you can add the axis labels. This is possible through the use of

two other specific functions, called xlabel() and ylabel(). These functions take as an

argument a string, which will be the shown text.

Note Command lines forming the code to represent your chart are growing in
number. You do not need to rewrite all the commands each time, but using the
arrow keys on the keyboard, you can call up the list of commands previously
passed and edit them by adding new rows (in the text are indicated in bold).

Figure 7-13. The figure has been divided into two vertical subplots

Chapter 7 Data Visualization with matplotlib

252

Now add two axis labels to the chart. They will describe which kind of value is

assigned to each axis (as shown in Figure 7-14).

In [10]: plt.axis([0,5,0,20])

 ...: plt.title('My first plot')

 ...: plt.xlabel('Counting')

 ...: plt.ylabel('Square values')

 ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')

Out[10]: [<matplotlib.lines.Line2D at 0x990f3c8>]

Figure 7-14. A plot is more informative by adding axis labels

Thanks to the keywords, you can change the characteristics of the text. For example,

you can modify the title by changing the font and increasing the size of the characters.

You can also modify the color of the axis labels to accentuate the title of the plot

(as shown in Figure 7-15).

In []: plt.axis([0,5,0,20])

 ...: plt.title('My first plot',fontsize=20,fontname='Times New Roman')

 ...: plt.xlabel('Counting',color='gray')

 ...: plt.ylabel('Square values',color='gray')

 ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')

Out[116]: [<matplotlib.lines.Line2D at 0x11f17470>]

Chapter 7 Data Visualization with matplotlib

253

But matplotlib is not limited to this: pyplot allows you to add text to any position

within a chart. This feature is performed by a specific function called text().

text(x,y,s, fontdict=None, **kwargs)

The first two arguments are the coordinates of the location where you want to place

the text. s is the string of text to be added, and fontdict (optional) is the font that you

want to use. Finally, you can add the keywords.

Add the label to each point of the plot. Because the first two arguments to the text()

function are the coordinates of the graph, you have to use the coordinates of the four

points of the plot shifted slightly on the y-axis.

In []: plt.axis([0,5,0,20])

 ...: plt.title('My first plot',fontsize=20,fontname='Times New Roman')

 ...: plt.xlabel('Counting',color='gray')

 ...: plt.ylabel('Square values',color='gray')

 ...: plt.text(1,1.5,'First')

 ...: plt.text(2,4.5,'Second')

 ...: plt.text(3,9.5,'Third')

 ...: plt.text(4,16.5,'Fourth')

 ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')

Out[108]: [<matplotlib.lines.Line2D at 0x10f76898>]

Figure 7-15. The text can be modified by setting the keywords

Chapter 7 Data Visualization with matplotlib

254

As you can see in Figure 7-16, now each point of the plot has a label.

Figure 7-16. Every point of the plot has an informative label

Since matplotlib is a graphics library designed to be used in scientific circles, it

must be able to exploit the full potential of scientific language, including mathematical

expressions. matplotlib offers the possibility to integrate LaTeX expressions, thereby

allowing you to insert mathematical expressions within the chart.

To do this, you can add a LaTeX expression to the text, enclosing it between two $

characters. The interpreter will recognize them as LaTeX expressions and convert them

to the corresponding graphic, which can be a mathematical expression, a formula,

mathematical characters, or just Greek letters. Generally you have to precede the string

containing LaTeX expressions with an r, which indicates raw text, in order to avoid

unintended escape sequences.

Here, you can also use the keywords to further enrich the text to be shown in the

plot. Therefore, as an example, you can add the formula describing the trend followed by

the point of the plot and enclose it in a colored bounding box (see Figure 7-17).

Chapter 7 Data Visualization with matplotlib

255

In []: plt.axis([0,5,0,20])

 ...: plt.title('My first plot',fontsize=20,fontname='Times New Roman')

 ...: plt.xlabel('Counting',color='gray')

 ...: plt.ylabel('Square values',color='gray')

 ...: plt.text(1,1.5,'First')

 ...: plt.text(2,4.5,'Second')

 ...: plt.text(3,9.5,'Third')

 ...: plt.text(4,16.5,'Fourth')

 ...: plt.text(1.1,12,r'$y = x^2$',fontsize=20,bbox={'facecolor':'yellow',

'alpha':0.2})

 ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')

Out[130]: [<matplotlib.lines.Line2D at 0x13920860>]

Figure 7-17. Any mathematical expression can be seen in the context of a chart

To get a complete view on the potential offered by LaTeX, consult Appendix A of

this book.

Chapter 7 Data Visualization with matplotlib

256

Figure 7-18. A grid makes it easier to read the values of the data points
represented on a chart

 Adding a Grid
Another element you can add to a plot is a grid. Often its addition is necessary in order to

better understand the position occupied by each point on the chart.

Adding a grid to a chart is a very simple operation: just add the grid() function,

passing True as an argument (see Figure 7-18).

In []: plt.axis([0,5,0,20])

 ...: plt.title('My first plot',fontsize=20,fontname='Times New Roman')

 ...: plt.xlabel('Counting',color='gray')

 ...: plt.ylabel('Square values',color='gray')

 ...: plt.text(1,1.5,'First')

 ...: plt.text(2,4.5,'Second')

 ...: plt.text(3,9.5,'Third')

 ...: plt.text(4,16.5,'Fourth')

 ...: plt.text(1.1,12,r'$y = x^2$',fontsize=20,bbox={'facecolor':'yellow',

'alpha':0.2})

 ...: plt.grid(True)

 ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')

Out[108]: [<matplotlib.lines.Line2D at 0x10f76898>]

Chapter 7 Data Visualization with matplotlib

257

 Adding a Legend
Another very important component that should be present in any chart is the legend.

pyplot also provides a specific function for this type of object: legend().

Add a legend to your chart with the legend() function and a string indicating the

words with which you want the series to be shown. In this example, you assign the First

series name to the input data array (see Figure 7-19).

In []: plt.axis([0,5,0,20])

 ...: plt.title('My first plot',fontsize=20,fontname='Times New Roman')

 ...: plt.xlabel('Counting',color='gray')

 ...: plt.ylabel('Square values',color='gray')

 ...: plt.text(2,4.5,'Second')

 ...: plt.text(3,9.5,'Third')

 ...: plt.text(4,16.5,'Fourth')

 ...: plt.text(1.1,12,'$y = x^2$',fontsize=20,bbox={'facecolor':'yellow',

'alpha':0.2})

 ...: plt.grid(True)

 ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')

 ...: plt.legend(['First series'])

Out[156]: <matplotlib.legend.Legend at 0x16377550>

Figure 7-19. A legend is added in the upper-right corner by default

Chapter 7 Data Visualization with matplotlib

258

As you can see in Figure 7-19, the legend is added in the upper-right corner by

default. Again if you want to change this behavior you will need to add a few kwargs. For

example, the position occupied by the legend is set by assigning numbers from 0 to 10 to

the loc kwarg. Each of these numbers characterizes one of the corners of the chart

(see Table 7-1). A value of 1 is the default, that is, the upper-right corner. In the next

example, you will move the legend in the upper-left corner so it will not overlap with the

points represented in the plot.

Before you begin to modify the code to move the legend, I want to add a small notice.

Generally, the legends are used to indicate the definition of a series to the reader via

a label associated with a color and/or a marker that distinguishes it in the plot. So far

in the examples, you have used a single series that was expressed by a single plot()

function. Now, you have to focus on a more general case in which the same plot shows

more series simultaneously. Each series in the chart will be characterized by a specific

color and a specific marker (see Figure 7-20). In terms of code, instead, each series will be

characterized by a call to the plot() function and the order in which they are defined will

correspond to the order of the text labels passed as an argument to the legend() function.

Table 7-1. The Possible Values for the loc Keyword

Location Code Location String

0 best

1 upper-right

2 upper-left

3 lower-right

4 lower-left

5 right

6 center-left

7 center-right

8 lower-center

9 upper-center

10 center

Chapter 7 Data Visualization with matplotlib

259

In []: import matplotlib.pyplot as plt

 ...: plt.axis([0,5,0,20])

 ...: plt.title('My first plot',fontsize=20,fontname='Times New Roman')

 ...: plt.xlabel('Counting',color='gray')

 ...: plt.ylabel('Square values',color='gray')

 ...: plt.text(1,1.5,'First')

 ...: plt.text(2,4.5,'Second')

 ...: plt.text(3,9.5,'Third')

 ...: plt.text(4,16.5,'Fourth')

 ...: plt.text(1.1,12,'$y = x^2$',fontsize=20,bbox={'facecolor':'yellow',

'alpha':0.2})

 ...: plt.grid(True)

 ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')

 ...: plt.plot([1,2,3,4],[0.8,3.5,8,15],'g^')

 ...: plt.plot([1,2,3,4],[0.5,2.5,4,12],'b*')

 ...: plt.legend(['First series','Second series','Third series'],loc=2)

Out[170]: <matplotlib.legend.Legend at 0x1828d7b8>

Figure 7-20. A legend is necessary in every multiseries chart

Chapter 7 Data Visualization with matplotlib

260

 Saving Your Charts
In this section you will learn how to save your chart in different ways depending on your

needs. If you need to reproduce your chart in different notebooks or Python sessions, or

reuse them in future projects, it is a good practice to save the Python code. On the other

hand, if you need to make reports or presentations, it can be very useful to save your

chart as an image. Moreover, it is possible to save your chart as a HTML page, and this

could be very useful when you need to share your work on Web.

 Saving the Code
As you can see from the examples in the previous sections, the code concerning the

representation of a single chart is growing into a fair number of rows. Once you think

you’ve reached a good point in your development process, you can choose to save all

rows of code in a .py file that you can recall at any time.

You can use the magic command save% followed by the name of the file you want to

save followed by the number of input prompts containing the row of code that you want

to save. If all the code is written in only one prompt, as your case, you have to add only

its number; otherwise if you want to save the code written in many prompts, for example

from 10 to 20, you have to indicate this range with the two numbers separated by a -, that

is, 10-20.

In your case, you would save the Python code underlying the representation of your

first chart contained into the input prompt with the number 171.

In [171]: import matplotlib.pyplot as plt

...

You need to insert the following command to save the code into a new .py file.

%save my_first_chart 171

After you launch the command, you will find the my_first_chart.py file in your

working directory (see Listing 7-1).

Chapter 7 Data Visualization with matplotlib

261

Listing 7-1. my_first_chart.py

coding: utf-8

import matplotlib.pyplot as plt

plt.axis([0,5,0,20])

plt.title('My first plot',fontsize=20,fontname='Times New Roman')

plt.xlabel('Counting',color='gray')

plt.ylabel('Square values',color='gray')

plt.text(1,1.5,'First')

plt.text(2,4.5,'Second')

plt.text(3,9.5,'Third')

plt.text(4,16.5,'Fourth')

plt.text(1.1,12,'$y = x^2$',fontsize=20,bbox={'facecolor':'yellow',

'alpha':0.2})

plt.grid(True)

plt.plot([1,2,3,4],[1,4,9,16],'ro')

plt.plot([1,2,3,4],[0.8,3.5,8,15],'g^')

plt.plot([1,2,3,4],[0.5,2.5,4,12],'b*')

plt.legend(['First series','Second series','Third series'],loc=2)

Later, when you open a new IPython session, you will have your chart and start to

change the code at the point where you had saved it by entering the following command:

ipython qtconsole --matplotlib inline -m my_first_chart.py

Or you can reload the entire code in a single prompt in the QtConsole using the

magic command %load.

%load my_first_chart.py

Or you can run it during a session with the magic command %run.

%run my_first_chart.py

Note on my system, this command works only after launching the two previous
commands.

Chapter 7 Data Visualization with matplotlib

262

 Converting Your Session to an HTML File
Using the IPython QtConsole, you can convert all the code and graphics present in your

current session to an HTML page. Simply choose File-->Save to HTML/XHTML from the

menu (as shown in Figure 7-21).

Figure 7-21. You can save your current session as a web page

You will be asked to save your session in two different formats: HTML and

XHMTL. The difference between the two formats is based on the image conversion type.

If you select HTML as the output file format, the images contained in your session will

be converted to PNG format. If you select XHTML as the output file format instead, the

images will be converted to SVG format.

Chapter 7 Data Visualization with matplotlib

263

In this example, save your session as an HTML file and name it my_session.html, as

shown in Figure 7-22.

Figure 7-22. You can select the type of file between HTML and XHTML

Figure 7-23. You can choose between creating external image files and embedding
the PNG format directly into the HTML page

At this point, you will be asked if you want to save your images in an external

directory or inline (see Figure 7-23).

By choosing the external option, the images will be collected into a directory called

my_session_files. By choosing inline, the graphical information concerning the image

is embedded into the HTML code.

Chapter 7 Data Visualization with matplotlib

264

 Saving Your Chart Directly as an Image
If you are interested in saving only the figure of a chart as an image file, ignoring all

the code you’ve written during the session, this is also possible. In fact, thanks to

the savefig() function, you can directly save the chart in a PNG format, although

you should take care to add this function to the end of the same series of commands

(otherwise you’ll get a blank PNG file).

In []: plt.axis([0,5,0,20])

 ...: plt.title('My first plot',fontsize=20,fontname='Times New Roman')

 ...: plt.xlabel('Counting',color='gray')

 ...: plt.ylabel('Square values',color='gray')

 ...: plt.text(1,1.5,'First')

 ...: plt.text(2,4.5,'Second')

 ...: plt.text(3,9.5,'Third')

 ...: plt.text(4,16.5,'Fourth')

 ...: plt.text(1.1,12,'$y = x^2$',fontsize=20,bbox={'facecolor':'yellow',

'alpha':0.2})

 ...: plt.grid(True)

 ...: plt.plot([1,2,3,4],[1,4,9,16],'ro')

 ...: plt.plot([1,2,3,4],[0.8,3.5,8,15],'g^')

 ...: plt.plot([1,2,3,4],[0.5,2.5,4,12],'b*')

 ...: plt.legend(['First series','Second series','Third series'],loc=2)

 ...: plt.savefig('my_chart.png')

Executing the previous code, a new file will be created in your working directory.

This file will be named my_chart.png and will contain the image of your chart.

 Handling Date Values
One of the most common problems encountered when doing data analysis is handling

data of the date-time type. Displaying that data along an axis (normally the x-axis) can be

problematic, especially when managing ticks (see Figure 7-24).

Chapter 7 Data Visualization with matplotlib

265

Take for example the display of a linear chart with a dataset of eight points in which

you have to represent date values on the x-axis with the following format: day-month- year.

In []: import datetime

 ...: import numpy as np

 ...: import matplotlib.pyplot as plt

 ...: events = [datetime.date(2015,1,23),datetime.

date(2015,1,28),datetime.date(2015,2,3),datetime.

date(2015,2,21),datetime.date(2015,3,15),datetime.

date(2015,3,24),datetime.date(2015,4,8),datetime.date(2015,4,24)]

 ...: readings = [12,22,25,20,18,15,17,14]

 ...: plt.plot(events,readings)

Out[83]: [<matplotlib.lines.Line2D at 0x12666400>]

Figure 7-24. If not handled, displaying date-time values can be problematic

As you can see in Figure 7-24, automatic management of ticks, and especially the

tick labels, can be a disaster. The dates expressed in this way are difficult to read,

there are no clear time intervals elapsed between one point and another, and there is

also overlap.

Chapter 7 Data Visualization with matplotlib

266

To manage dates it is therefore advisable to define a time scale with appropriate

objects. First you need to import matplotlib.dates, a module specialized for this type

of data. Then you define the scales of the times, as in this case, a scale of days and one of

the months, through the MonthLocator() and DayLocator() functions. In these cases,

the formatting is also very important, and to avoid overlap or unnecessary references,

you have to limit the tick labels to the essential, which in this case is year-month. This

format can be passed as an argument to the DateFormatter() function.

After you defined the two scales, one for the days and one for the months, you can

set two different kinds of ticks on the x-axis, using the set_major_locator() and set_

minor_locator() functions on the xaxis object. Instead, to set the text format of the tick

labels referred to the months you have to use the set_major_formatter() function.

Changing all these settings you finally obtain the plot as shown in Figure 7-25.

In []: import datetime

 ...: import numpy as np

 ...: import matplotlib.pyplot as plt

 ...: import matplotlib.dates as mdates

 ...: months = mdates.MonthLocator()

 ...: days = mdates.DayLocator()

 ...: timeFmt = mdates.DateFormatter('%Y-%m')

 ...: events = [datetime.date(2015,1,23),datetime.

date(2015,1,28),datetime.date(2015,2,3),datetime.

date(2015,2,21),datetime.date(2015,3,15),datetime.

date(2015,3,24),datetime.date(2015,4,8),datetime.date(2015,4,24)]

readings = [12,22,25,20,18,15,17,14]

 ...: fig, ax = plt.subplots()

 ...: plt.plot(events,readings)

 ...: ax.xaxis.set_major_locator(months)

 ...: ax.xaxis.set_major_formatter(timeFmt)

 ...: ax.xaxis.set_minor_locator(days)

Chapter 7 Data Visualization with matplotlib

267

Figure 7-25. Now the tick labels of the x-axis refer only to the months, making the
plot more readable

 Chart Typology
In the previous sections you saw a number of examples relating to the architecture of the

matplotlib library. Now that you are familiar with the use of the main graphic elements

in a chart, it is time to see a series of examples treating different types of charts, starting

from the most common ones such as linear charts, bar charts, and pie charts, up to a

discussion about some that are more sophisticated but commonly used nonetheless.

This part of the chapter is very important since the purpose of this library is the

visualization of the results produced by data analysis. Thus, knowing how to choose the

proper type of chart is a fundamental choice. Remember that excellent data analysis

represented incorrectly can lead to a wrong interpretation of the experimental results.

 Line Charts
Among all the chart types, the linear chart is the simplest. A line chart is a sequence of

data points connected by a line. Each data point consists of a pair of values (x,y), which

will be reported in the chart according to the scale of values of the two axes (x and y).

Chapter 7 Data Visualization with matplotlib

268

By way of example, you can begin to plot the points generated by a mathematical

function. Then, you can consider a generic mathematical function such as this:

y = sin (3 * x) / x

Therefore, if you want to create a sequence of data points, you need to create two

NumPy arrays. First you create an array containing the x values to be referred to the

x-axis. In order to define a sequence of increasing values you will use the np.arange()

function. Since the function is sinusoidal you should refer to values that are multiples

and submultiples of the Greek pi (np.pi). Then, using these sequence of values, you can

obtain the y values applying the np.sin() function directly to these values (thanks to

NumPy!).

After all this, you have only to plot them by calling the plot() function. You will

obtain a line chart, as shown in Figure 7-26.

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: x = np.arange(-2*np.pi,2*np.pi,0.01)

 ...: y = np.sin(3*x)/x

 ...: plt.plot(x,y)

Out[393]: [<matplotlib.lines.Line2D at 0x22404358>]

Figure 7-26. A mathematical function represented in a line chart

Chapter 7 Data Visualization with matplotlib

269

Figure 7-27. Three different series are drawn with different colors in the same chart

Now you can extend the case in which you want to display a family of functions, such

as this:

y = sin (n * x) / x

varying the parameter n.

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: x = np.arange(-2*np.pi,2*np.pi,0.01)

 ...: y = np.sin(3*x)/x

 ...: y2 = np.sin(2*x)/x

 ...: y3 = np.sin(3*x)/x

 ...: plt.plot(x,y)

 ...: plt.plot(x,y2)

 ...: plt.plot(x,y3)

As you can see in Figure 7-27, a different color is automatically assigned to each line.

All the plots are represented on the same scale; that is, the data points of each series refer

to the same x-axis and y-axis. This is because each call of the plot() function takes into

account the previous calls to same function, so the Figure applies the changes keeping

memory of the previous commands until the Figure is not displayed (using show() with

Python and Enter with the IPython QtConsole).

Chapter 7 Data Visualization with matplotlib

270

As you saw in the previous sections, regardless of the default settings, you can select

the type of stroke, color, etc. As the third argument of the plot() function you can

specify some codes that correspond to the color (see Table 7-2) and other codes that

correspond to line styles, all included in the same string. Another possibility is to use

two kwargs separately, color to define the color, and linestyle to define the stroke

(see Figure 7-28).

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: x = np.arange(-2*np.pi,2*np.pi,0.01)

 ...: y = np.sin(3*x)/x

 ...: y2 = np.sin(2*x)/x

 ...: y3 = np.sin(3*x)/x

 ...: plt.plot(x,y,'k--',linewidth=3)

 ...: plt.plot(x,y2,'m-.')

 ...: plt.plot(x,y3,color='#87a3cc',linestyle='--')

Figure 7-28. You can define colors and line styles using character codes

Chapter 7 Data Visualization with matplotlib

271

You have just defined a range from -2π to 2π on the x-axis, but by default, values on

ticks are shown in numerical form. Therefore you need to replace the numerical values

with multiple of π. You can also replace the ticks on the y-axis. To do all this, you have to

use xticks() and yticks() functions, passing to each of them two lists of values. The

first list contains values corresponding to the positions where the ticks are to be placed,

and the second contains the tick labels. In this particular case, you have to use strings

containing LaTeX format in order to correctly display the symbol π. Remember to define

them within two $ characters and to add a r as the prefix.

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: x = np.arange(-2*np.pi,2*np.pi,0.01)

 ...: y = np.sin(3*x)/x

 ...: y2 = np.sin(2*x)/x

 ...: y3 = np.sin(x)/x

 ...: plt.plot(x,y,color='b')

 ...: plt.plot(x,y2,color='r')

 ...: plt.plot(x,y3,color='g')

 ...: plt.xticks([-2*np.pi, -np.pi, 0, np.pi, 2*np.pi],

 [r'-2π',r'$-\pi$',r'0',r'$+\pi$',r'$+2\pi$'])

Table 7-2. Color Codes

Code Color

b blue

g green

r red

c cyan

m magenta

y yellow

k black

w white

Chapter 7 Data Visualization with matplotlib

272

 ...: plt.yticks([-1,0,1,2,3],

 [r'-1',r'0',r'$+1$',r'$+2$',r'$+3$'])

Out[423]:

([<matplotlib.axis.YTick at 0x26877ac8>,

 <matplotlib.axis.YTick at 0x271d26d8>,

 <matplotlib.axis.YTick at 0x273c7f98>,

 <matplotlib.axis.YTick at 0x273cc470>,

 <matplotlib.axis.YTick at 0x273cc9e8>],

 <a list of 5 Text yticklabel objects>)

In the end, you will get a clean and pleasant line chart showing Greek characters, as

in Figure 7-29.

Figure 7-29. The tick label can be improved adding text with LaTeX format

In all the linear charts you have seen so far, you always have the x-axis and y-axis

placed at the edge of the figure (corresponding to the sides of the bounding border box).

Another way of displaying axes is to have the two axes passing through the origin (0, 0),

i.e., the two Cartesian axes.

Chapter 7 Data Visualization with matplotlib

273

To do this, you must first capture the Axes object through the gca() function. Then

through this object, you can select each of the four sides making up the bounding box,

specifying for each one its position: right, left, bottom, and top. Crop the sides that do not

match any axis (right and bottom) using the set_color() function and indicating none

for color. Then, the sides corresponding to the x- and y-axes are moved to pass through

the origin (0,0) with the set_position() function.

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: x = np.arange(-2*np.pi,2*np.pi,0.01)

 ...: y = np.sin(3*x)/x

 ...: y2 = np.sin(2*x)/x

 ...: y3 = np.sin(x)/x

 ...: plt.plot(x,y,color='b')

 ...: plt.plot(x,y2,color='r')

 ...: plt.plot(x,y3,color='g')

 ...: plt.xticks([-2*np.pi, -np.pi, 0, np.pi, 2*np.pi],

 [r'-2π',r'$-\pi$',r'0',r'$+\pi$',r'$+2\pi$'])

 ...: plt.yticks([-1,0,+1,+2,+3],

 [r'-1',r'0',r'$+1$',r'$+2$',r'$+3$'])

 ...: ax = plt.gca()

 ...: ax.spines['right'].set_color('none')

 ...: ax.spines['top'].set_color('none')

 ...: ax.xaxis.set_ticks_position('bottom')

 ...: ax.spines['bottom'].set_position(('data',0))

 ...: ax.yaxis.set_ticks_position('left')

 ...: ax.spines['left'].set_position(('data',0))

Now the chart will show the two axes crossing in the middle of the figure, that is, the

origin of the Cartesian axes, as shown in Figure 7-30.

Chapter 7 Data Visualization with matplotlib

274

Often, it is very useful to be able to specify a particular point of the line using a

notation and optionally add an arrow to better indicate the position of the point. For

example, this notation may be a LaTeX expression, such as the formula for the limit of

the function sinx/x with x tends to 0.

In this regard, matplotlib provides a function called annotate(), which is especially

useful in these cases, even if the numerous kwargs needed to obtain a good result can

make its settings quite complex. The first argument is the string to be represented

containing the expression in LaTeX; then you can add the various kwargs. The point of

the chart to note is indicated by a list containing the coordinates of the point [x, y] passed

to the xy kwarg. The distance of the textual notation from the point to be highlighted

is defined by the xytext kwarg and represented by means of a curved arrow whose

characteristics are defined in the arrowprops kwarg.

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: x = np.arange(-2*np.pi,2*np.pi,0.01)

 ...: y = np.sin(3*x)/x

 ...: y2 = np.sin(2*x)/x

 ...: y3 = np.sin(x)/x

 ...: plt.plot(x,y,color='b')

 ...: plt.plot(x,y2,color='r')

Figure 7-30. The chart shows two Cartesian axes

Chapter 7 Data Visualization with matplotlib

275

 ...: plt.plot(x,y3,color='g')

 ...: plt.xticks([-2*np.pi, -np.pi, 0, np.pi, 2*np.pi],

 [r'-2π',r'$-\pi$',r'0',r'$+\pi$',r'$+2\pi$'])

 ...: plt.yticks([-1,0,+1,+2,+3],

 [r'-1',r'0',r'$+1$',r'$+2$',r'$+3$'])

 ...: plt.annotate(r'$\lim_{x\to 0}\frac{\sin(x)}{x}= 1$', xy=[0,1],

xycoords='data',xytext=[30,30],fontsize=16,textcoords='offset points',

arrowprops=dict(arrowstyle="->",connectionstyle="arc3,rad=.2"))

 ...: ax = plt.gca()

 ...: ax.spines['right'].set_color('none')

 ...: ax.spines['top'].set_color('none')

 ...: ax.xaxis.set_ticks_position('bottom')

 ...: ax.spines['bottom'].set_position(('data',0))

 ...: ax.yaxis.set_ticks_position('left')

 ...: ax.spines['left'].set_position(('data',0))

Running this code, you will get the chart with the mathematical notation of the limit,

which is the point shown by the arrow in Figure 7-31.

Figure 7-31. Mathematical expressions can be added to a chart with the
annotate() function

Chapter 7 Data Visualization with matplotlib

276

 Line Charts with pandas
Moving to more practical cases, or at least more closely related to data analysis, now

is the time to see how easy it is to apply the matplotlib library to the dataframes of the

pandas library. The visualization of the data in a dataframe as a linear chart is a very

simple operation. It is sufficient to pass the dataframe as an argument to the plot()

function to obtain a multiseries linear chart (see Figure 7-32).

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: import pandas as pd

 ...: data = {'series1':[1,3,4,3,5],

 'series2':[2,4,5,2,4],

 'series3':[3,2,3,1,3]}

 ...: df = pd.DataFrame(data)

 ...: x = np.arange(5)

 ...: plt.axis([0,5,0,7])

 ...: plt.plot(x,df)

 ...: plt.legend(data, loc=2)

Figure 7-32. The multiseries line chart displays the data within a pandas
dataframe

Chapter 7 Data Visualization with matplotlib

277

 Histograms
A histogram consists of adjacent rectangles erected on the x-axis, split into discrete

intervals called bins, and with an area proportional to the frequency of the occurrences

for that bin. This kind of visualization is commonly used in statistical studies about

distribution of samples.

In order to represent a histogram, pyplot provides a special function called hist().

This graphic function also has a feature that other functions producing charts do not have.

The hist() function, in addition to drawing the histogram, returns a tuple of values that

are the results of the calculation of the histogram. In fact the hist() function can also

implement the calculation of the histogram, that is, it is sufficient to provide a series of

samples of values as an argument and the number of bins in which to be divided, and it

will take care of dividing the range of samples in many intervals (bins), and then calculate

the occurrences for each bin. The result of this operation, in addition to being shown in

graphical form (see Figure 7-33), will be returned in the form of a tuple.

(n, bins, patches)

To understand this operation, a practical example is best. Then you can generate a

population of 100 random values from 0 to 100 using the random.randint() function.

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: pop = np.random.randint(0,100,100)

 ...: pop

Out[]:

array([32, 14, 55, 33, 54, 85, 35, 50, 91, 54, 44, 74, 77, 6, 77, 74, 2,

 54, 14, 30, 80, 70, 6, 37, 62, 68, 88, 4, 35, 97, 50, 85, 19, 90,

 65, 86, 29, 99, 15, 48, 67, 96, 81, 34, 43, 41, 21, 79, 96, 56, 68,

 49, 43, 93, 63, 26, 4, 21, 19, 64, 16, 47, 57, 5, 12, 28, 7, 75,

 6, 33, 92, 44, 23, 11, 61, 40, 5, 91, 34, 58, 48, 75, 10, 39, 77,

 70, 84, 95, 46, 81, 27, 6, 83, 9, 79, 39, 90, 77, 94, 29])

Now, create the histogram of these samples by passing as an argument the hist()

function. For example, you want to divide the occurrences in 20 bins (if not specified,

the default value is 10 bins) and to do that you have to use the kwarg bin (as shown in

Figure 7-33).

In []: n,bins,patches = plt.hist(pop,bins=20)

Chapter 7 Data Visualization with matplotlib

278

Figure 7-33. The histogram shows the occurrences in each bin

 Bar Charts
Another very common type of chart is the bar chart. It is very similar to a histogram

but in this case the x-axis is not used to reference numerical values but categories. The

realization of the bar chart is very simple with matplotlib, using the bar() function.

In []: import matplotlib.pyplot as plt

 ...: index = [0,1,2,3,4]

 ...: values = [5,7,3,4,6]

 ...: plt.bar(index,values)

Out[15]: <Container object of 5 artists>

With this few rows of code, you will obtain a bar chart as shown in Figure 7-34.

Chapter 7 Data Visualization with matplotlib

279

Figure 7-34. The simplest bar chart with matplotlib

If you look at Figure 7-34 you can see that the indices are drawn on the x-axis at the

beginning of each bar. Actually, because each bar corresponds to a category, it would

be better if you specify the categories through the tick label, defined by a list of strings

passed to the xticks() function. As for the location of these tick labels, you have to

pass a list containing the values corresponding to their positions on the x-axis as the

first argument of the xticks() function. At the end you will get a bar chart, as shown in

Figure 7-35.

In []: import numpy as np

 ...: index = np.arange(5)

 ...: values1 = [5,7,3,4,6]

 ...: plt.bar(index,values1)

 ...: plt.xticks(index+0.4,['A','B','C','D','E'])

Chapter 7 Data Visualization with matplotlib

280

Actually there are many other steps you can take to further refine the bar chart.

Each of these finishes is set by adding a specific kwarg as an argument in the bar()

function. For example, you can add the standard deviation values of the bar through the

yerr kwarg along with a list containing the standard deviations. This kwarg is usually

combined with another kwarg called error_kw, which, in turn, accepts other kwargs

specialized for representing error bars. Two very specific kwargs used in this case are

eColor, which specifies the color of the error bars, and capsize, which defines the width

of the transverse lines that mark the ends of the error bars.

Another kwarg that you can use is alpha, which indicates the degree of transparency

of the colored bar. Alpha is a value ranging from 0 to 1. When this value is 0 the object

is completely transparent to become gradually more significant with the increase of the

value, until arriving at 1, at which the color is fully represented.

As usual, the use of a legend is recommended, so in this case you should use a kwarg

called label to identify the series that you are representing.

At the end you will get a bar chart with error bars, as shown in Figure 7-36.

In []: import numpy as np

 ...: index = np.arange(5)

 ...: values1 = [5,7,3,4,6]

 ...: std1 = [0.8,1,0.4,0.9,1.3]

 ...: plt.title('A Bar Chart')

Figure 7-35. A simple bar chart with categories on the x-axis

Chapter 7 Data Visualization with matplotlib

281

 ...: plt.bar(index,values1,yerr=std1,error_kw={'ecolor':'0.1',

 'capsize':6},alpha=0.7,label='First')

 ...: plt.xticks(index+0.4,['A','B','C','D','E'])

 ...: plt.legend(loc=2)

Figure 7-36. A bar chart with error bars

 Horizontal Bar Charts
So far you have seen the bar chart oriented vertically. There are also bar chart oriented

horizontally. This mode is implemented by a special function called barh(). The

arguments and the kwargs valid for the bar() function remain the same for this function.

The only change that you have to take into account is that the roles of the axes are

reversed. Now, the categories are represented on the y-axis and the numerical values are

shown on the x-axis (see Figure 7-37).

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: index = np.arange(5)

 ...: values1 = [5,7,3,4,6]

 ...: std1 = [0.8,1,0.4,0.9,1.3]

 ...: plt.title('A Horizontal Bar Chart')

Chapter 7 Data Visualization with matplotlib

282

 ...: plt.barh(index,values1,xerr=std1,error_kw={'ecolor':'0.1',

'capsize':6},alpha=0.7,label='First')

 ...: plt.yticks(index+0.4,['A','B','C','D','E'])

 ...: plt.legend(loc=5)

Figure 7-37. A simple horizontal bar chart

 Multiserial Bar Charts
As line charts, bar charts also generally are used to simultaneously display larger

series of values. But in this case it is necessary to make some clarifications on how to

structure a multiseries bar chart. So far you have defined a sequence of indexes, each

corresponding to a bar, to be assigned to the x-axis. These indices should represent

categories. In this case, however, you have more bars that must share the same category.

One approach used to overcome this problem is to divide the space occupied by an

index (for convenience its width is 1) in as many parts as are the bars sharing that index

and that we want to display. Moreover, it is advisable to add space, which will serve as a

gap to separate a category with respect to the next (as shown in Figure 7-38).

Chapter 7 Data Visualization with matplotlib

283

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: index = np.arange(5)

 ...: values1 = [5,7,3,4,6]

 ...: values2 = [6,6,4,5,7]

 ...: values3 = [5,6,5,4,6]

 ...: bw = 0.3

 ...: plt.axis([0,5,0,8])

 ...: plt.title('A Multiseries Bar Chart',fontsize=20)

 ...: plt.bar(index,values1,bw,color='b')

 ...: plt.bar(index+bw,values2,bw,color='g')

 ...: plt.bar(index+2*bw,values3,bw,color='r')

 ...: plt.xticks(index+1.5*bw,['A','B','C','D','E'])

Figure 7-38. A multiseries bar chart displaying three series

Chapter 7 Data Visualization with matplotlib

284

Regarding the multiseries horizontal bar chart (see Figure 7-39), things are very

similar. You have to replace the bar() function with the corresponding barh() function

and remember to replace the xticks() function with the yticks() function. You need to

reverse the range of values covered by the axes in the axis() function.

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: index = np.arange(5)

 ...: values1 = [5,7,3,4,6]

 ...: values2 = [6,6,4,5,7]

 ...: values3 = [5,6,5,4,6]

 ...: bw = 0.3

 ...: plt.axis([0,8,0,5])

 ...: plt.title('A Multiseries Horizontal Bar Chart',fontsize=20)

 ...: plt.barh(index,values1,bw,color='b')

 ...: plt.barh(index+bw,values2,bw,color='g')

 ...: plt.barh(index+2*bw,values3,bw,color='r')

 ...: plt.yticks(index+0.4,['A','B','C','D','E'])

Figure 7-39. A multiseries horizontal bar chart

Chapter 7 Data Visualization with matplotlib

285

Figure 7-40. The values in a dataframe can be directly displayed as a bar chart

 Multiseries Bar Charts with pandas Dataframe
As you saw in the line charts, the matplotlib library also provides the ability to directly

represent the dataframe objects containing the results of data analysis in the form of bar

charts. And even here it does it quickly, directly, and automatically. The only thing you

need to do is use the plot() function applied to the dataframe object and specify inside

a kwarg called kind to which you have to assign the type of chart you want to represent,

which in this case is bar. Thus, without specifying any other settings, you will get the bar

chart shown in Figure 7-40.

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: import pandas as pd

 ...: data = {'series1':[1,3,4,3,5],

 'series2':[2,4,5,2,4],

 'series3':[3,2,3,1,3]}

 ...: df = pd.DataFrame(data)

 ...: df.plot(kind='bar')

Chapter 7 Data Visualization with matplotlib

286

However, if you want to get more control, or if your case requires it, you can still

extract portions of the dataframe as NumPy arrays and use them as illustrated in the

previous examples in this section. That is, by passing them separately as arguments to

the matplotlib functions.

Moreover, regarding the horizontal bar chart, the same rules can be applied, but

remember to set barh as the value of the kind kwarg. You’ll get a multiseries horizontal

bar chart, as shown in Figure 7-41.

Figure 7-41. A horizontal bar chart could be a valid alternative to visualize your
dataframe values

 Multiseries Stacked Bar Charts
Another form to represent a multiseries bar chart is in the stacked form, in which the

bars are stacked one on the other. This is especially useful when you want to show the

total value obtained by the sum of all the bars.

To transform a simple multiseries bar chart in a stacked one, you add the bottom

kwarg to each bar() function. Each series must be assigned to the corresponding

bottom kwarg. At the end you will obtain the stacked bar chart, as shown

in Figure 7-42.

Chapter 7 Data Visualization with matplotlib

287

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: series1 = np.array([3,4,5,3])

 ...: series2 = np.array([1,2,2,5])

 ...: series3 = np.array([2,3,3,4])

 ...: index = np.arange(4)

 ...: plt.axis([-0.5,3.5,0,15])

 ...: plt.title('A Multiseries Stacked Bar Chart')

 ...: plt.bar(index,series1,color='r')

 ...: plt.bar(index,series2,color='b',bottom=series1)

 ...: plt.bar(index,series3,color='g',bottom=(series2+series1))

 ...: plt.xticks(index+0.4,['Jan18','Feb18','Mar18','Apr18'])

Figure 7-42. A multiseries stacked bar

Here too, in order to create the equivalent horizontal stacked bar chart, you need

to replace the bar() function with barh() function, being careful to change the other

parameters as well. Indeed the xticks() function should be replaced with the yticks()

function because the labels of the categories must now be reported on the y-axis. After

making all these changes, you will obtain the horizontal stacked bar chart as shown in

Figure 7-43.

Chapter 7 Data Visualization with matplotlib

288

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: index = np.arange(4)

 ...: series1 = np.array([3,4,5,3])

 ...: series2 = np.array([1,2,2,5])

 ...: series3 = np.array([2,3,3,4])

 ...: plt.axis([0,15,-0.5,3.5])

 ...: plt.title('A Multiseries Horizontal Stacked Bar Chart')

 ...: plt.barh(index,series1,color='r')

 ...: plt.barh(index,series2,color='g',left=series1)

 ...: plt.barh(index,series3,color='b',left=(series1+series2))

 ...: plt.yticks(index+0.4,['Jan18','Feb18','Mar18','Apr18'])

Figure 7-43. A multiseries horizontal stacked bar chart

Chapter 7 Data Visualization with matplotlib

289

So far the various series have been distinguished by using different colors. Another

mode of distinction between the various series is to use hatches that allow you to fill

the various bars with strokes drawn in a different way. To do this, you have first to set

the color of the bar as white and then you have to use the hatch kwarg to define how

the hatch is to be set. The various hatches have codes distinguishable among these

characters (|, /, -, \, *, -) corresponding to the line style filling the bar. The more a symbol

is replicated, the denser the lines forming the hatch will be. For example, /// is more

dense than //, which is more dense than / (see Figure 7-44).

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: index = np.arange(4)

 ...: series1 = np.array([3,4,5,3])

 ...: series2 = np.array([1,2,2,5])

 ...: series3 = np.array([2,3,3,4])

 ...: plt.axis([0,15,-0.5,3.5])

 ...: plt.title('A Multiseries Horizontal Stacked Bar Chart')

 ...: plt.barh(index,series1,color='w',hatch='xx')

 ...: plt.barh(index,series2,color='w',hatch='///', left=series1)

 ...: plt.barh(index,series3,color='w',hatch='\\\\\\',left=(series1+series2))

 ...: plt.yticks(index+0.4,['Jan18','Feb18','Mar18','Apr18'])

Out[453]:

([<matplotlib.axis.YTick at 0x2a9f0748>,

 <matplotlib.axis.YTick at 0x2a9e1f98>,

 <matplotlib.axis.YTick at 0x2ac06518>,

 <matplotlib.axis.YTick at 0x2ac52128>],

 <a list of 4 Text yticklabel objects>)

Chapter 7 Data Visualization with matplotlib

290

 Stacked Bar Charts with a pandas Dataframe
Also with regard to stacked bar charts, it is very simple to directly represent the values

contained in the dataframe object by using the plot() function. You need only to add as

an argument the stacked kwarg set to True (see Figure 7-45).

In []: import matplotlib.pyplot as plt

 ...: import pandas as pd

 ...: data = {'series1':[1,3,4,3,5],

 'series2':[2,4,5,2,4],

 'series3':[3,2,3,1,3]}

 ...: df = pd.DataFrame(data)

 ...: df.plot(kind='bar', stacked=True)

Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0xcda8f98>

Figure 7-44. The stacked bars can be distinguished by their hatches

Chapter 7 Data Visualization with matplotlib

291

 Other Bar Chart Representations
Another type of very useful representation is that of a bar chart for comparison, where

two series of values sharing the same categories are compared by placing the bars in

opposite directions along the y-axis. In order to do this, you have to put the y values of

one of the two series in a negative form. Also in this example, you will see the possibility

of coloring the inner color of the bars in a different way. In fact, you can do this by setting

the two different colors on a specific kwarg: facecolor.

Furthermore, in this example, you will see how to add the y value with a label at the

end of each bar. This could be useful to increase the readability of the bar chart. You

can do this using a for loop in which the text() function will show the y value. You

can adjust the label position with the two kwargs called ha and va, which control the

horizontal and vertical alignment, respectively. The result will be the chart shown in

Figure 7-46.

In []: import matplotlib.pyplot as plt

 ...: x0 = np.arange(8)

 ...: y1 = np.array([1,3,4,6,4,3,2,1])

 ...: y2 = np.array([1,2,5,4,3,3,2,1])

 ...: plt.ylim(-7,7)

Figure 7-45. The values of a dataframe can be directly displayed as a stacked
bar chart

Chapter 7 Data Visualization with matplotlib

292

 ...: plt.bar(x0,y1,0.9,facecolor='r')

 ...: plt.bar(x0,-y2,0.9,facecolor='b')

 ...: plt.xticks(())

 ...: plt.grid(True)

 ...: for x, y in zip(x0, y1):

 plt.text(x + 0.4, y + 0.05, '%d' % y, ha='center', va= 'bottom')

 ...:

 ...: for x, y in zip(x0, y2):

 plt.text(x + 0.4, -y - 0.05, '%d' % y, ha='center', va= 'top')

Figure 7-46. Two series can be compared using this kind of bar chart

 Pie Charts
An alternative way to display data to the bar charts is the pie chart, easily obtainable

using the pie() function.

Even for this type of function, you pass as the main argument a list containing the

values to be displayed. I chose the percentages (their sum is 100), but you can use any

kind of value. It will be up to the pie() function to inherently calculate the percentage

occupied by each value.

Chapter 7 Data Visualization with matplotlib

293

Also with this type of representation, you need to define some key features making

use of the kwargs. For example, if you want to define the sequence of the colors, which

will be assigned to the sequence of input values correspondingly, you have to use the

colors kwarg. Therefore, you have to assign a list of strings, each containing the name of

the desired color. Another important feature is to add labels to each slice of the pie. To do

this, you have to use the labels kwarg to which you will assign a list of strings containing

the labels to be displayed in sequence.

In addition, in order to draw the pie chart in a perfectly spherical way, you have to

add the axis() function to the end, specifying the string 'equal' as an argument. You

will get a pie chart as shown in Figure 7-47.

In []: import matplotlib.pyplot as plt

 ...: labels = ['Nokia','Samsung','Apple','Lumia']

 ...: values = [10,30,45,15]

 ...: colors = ['yellow','green','red','blue']

 ...: plt.pie(values,labels=labels,colors=colors)

 ...: plt.axis('equal')

Figure 7-47. A very simple pie chart

Chapter 7 Data Visualization with matplotlib

294

To add complexity to the pie chart, you can draw it with a slice extracted from the

pie. This is usually done when you want to focus on a specific slice. In this case, for

example, you would highlight the slice referring to Nokia. In order to do this, there is

a special kwarg named explode. It is nothing but a sequence of float values of 0 or 1,

where 1 corresponds to the fully extended slice and 0 corresponds to slices completely

in the pie. All intermediate values correspond to an intermediate degree of extraction

(see Figure 7- 48).

You can also add a title to the pie chart with the title() function. You can also

adjust the angle of rotation of the pie by adding the startangle kwarg, which takes an

integer value between 0 and 360, which are the degrees of rotation precisely (0 is the

default value).

The modified chart should appear as shown in Figure 7- 48.

In []: import matplotlib.pyplot as plt

 ...: labels = ['Nokia','Samsung','Apple','Lumia']

 ...: values = [10,30,45,15]

 ...: colors = ['yellow','green','red','blue']

 ...: explode = [0.3,0,0,0]

 ...: plt.title('A Pie Chart')

 ...:plt.pie(values,labels=labels,colors=colors,explode=explode,

startangle=180)

 ...: plt.axis('equal')

Figure 7-48. A more advanced pie chart

Chapter 7 Data Visualization with matplotlib

295

Figure 7-49. An even more advanced pie chart

But the possible additions that you can insert in a pie chart do not end here. For example,

a pie chart does not have axes with ticks and so it is difficult to imagine the perfect

percentage represented by each slice. To overcome this, you can use the autopct kwarg,

which adds to the center of each slice a text label showing the corresponding value.

If you want to make it an even more appealing image, you can add a shadow

with the shadow kwarg setting it to True. In the end you will get a pie chart as shown

in Figure 7- 49.

In []: import matplotlib.pyplot as plt

 ...: labels = ['Nokia','Samsung','Apple','Lumia']

 ...: values = [10,30,45,15]

 ...: colors = ['yellow','green','red','blue']

 ...: explode = [0.3,0,0,0]

 ...: plt.title('A Pie Chart')

 ...: plt.pie(values,labels=labels,colors=colors,explode=explode,

 shadow=True,autopct='%1.1f%%',startangle=180)

 ...: plt.axis('equal')

Chapter 7 Data Visualization with matplotlib

296

 Pie Charts with a pandas Dataframe
Even for the pie chart, you can represent the values contained within a dataframe object.

In this case, however, the pie chart can represent only one series at a time, so in this

example you will display only the values of the first series specifying df['series1'].

You have to specify the type of chart you want to represent through the kind kwarg in the

plot() function, which in this case is pie. Furthermore, because you want to represent a

pie chart as perfectly circular, it is necessary that you add the figsize kwarg. At the end

you will obtain a pie chart as shown in Figure 7-50.

In []: import matplotlib.pyplot as plt

 ...: import pandas as pd

 ...: data = {'series1':[1,3,4,3,5],

 'series2':[2,4,5,2,4],

 'series3':[3,2,3,1,3]}

 ...: df = pd.DataFrame(data)

 ...: df['series1'].plot(kind='pie',figsize=(6,6))

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0xe1ba710>

Figure 7-50. The values in a pandas dataframe can be directly drawn as a pie chart

Chapter 7 Data Visualization with matplotlib

297

 Advanced Charts
In addition to the more classical charts such as bar charts or pie charts, you might

want to represent your results in an alternative ways. On the Internet and in various

publications there are many examples in which many alternative graphics solutions are

discussed and proposed, some really brilliant and captivating. This section only shows

some graphic representations; a more detailed discussion about this topic is beyond

the purpose of this book. You can use this section as an introduction to a world that is

constantly expanding: data visualization.

 Contour Plots
A quite common type of chart in the scientific world is the contour plot or contour map.

This visualization is in fact suitable for displaying three-dimensional surfaces through

a contour map composed of curves closed showing the points on the surface that are

located at the same level, or that have the same z value.

Although visually the contour plot is a very complex structure, its implementation is

not so difficult, thanks to the matplotlib library. First, you need the function z = f (x, y) for

generating a three-dimensional surface. Then, once you have defined a range of values

x, y that will define the area of the map to be displayed, you can calculate the z values

for each pair (x, y), applying the function f (x, y) just defined in order to obtain a matrix

of z values. Finally, thanks to the contour() function, you can generate the contour map

of the surface. It is often desirable to add also a color map along with a contour map.

That is, the areas delimited by the curves of level are filled by a color gradient, defined

by a color map. For example, as in Figure 7-51, you may indicate negative values with

increasingly dark shades of blue, and move to yellow and then red with the increase of

positive values.

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: dx = 0.01; dy = 0.01

 ...: x = np.arange(-2.0,2.0,dx)

 ...: y = np.arange(-2.0,2.0,dy)

 ...: X,Y = np.meshgrid(x,y)

 ...: def f(x,y):

 return (1 - y**5 + x**5)*np.exp(-x**2-y**2)

Chapter 7 Data Visualization with matplotlib

298

 ...: C = plt.contour(X,Y,f(X,Y),8,colors='black')

 ...: plt.contourf(X,Y,f(X,Y),8)

 ...: plt.clabel(C, inline=1, fontsize=10)

Figure 7-51. A contour map can describe the z values of a surface

The standard color gradient (color map) is represented in Figure 7-51. Actually you

choose among a large number of color maps available just specifying them with the

cmap kwarg.

Furthermore, when you have to deal with this kind of representation, adding a

color scale as a reference to the side of the graph is almost a must. This is possible by

simply adding the colorbar() function at the end of the code. In Figure 7-52 you can

see another example of color map that starts from black, passes through red, then turns

yellow until reaching white for the highest values. This color map is plt.cm.hot.

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: dx = 0.01; dy = 0.01

 ...: x = np.arange(-2.0,2.0,dx)

 ...: y = np.arange(-2.0,2.0,dy)

 ...: X,Y = np.meshgrid(x,y)

 ...: def f(x,y):

 return (1 - y**5 + x**5)*np.exp(-x**2-y**2)

Chapter 7 Data Visualization with matplotlib

299

Figure 7-52. The “hot” color map gradient gives an attractive look to the contour map

 ...: C = plt.contour(X,Y,f(X,Y),8,colors='black')

 ...: plt.contourf(X,Y,f(X,Y),8,cmap=plt.cm.hot)

 ...: plt.clabel(C, inline=1, fontsize=10)

 ...: plt.colorbar()

 Polar Charts
Another type of advanced chart that is popular is the polar chart. This type of chart

is characterized by a series of sectors that extend radially; each of these areas will

occupy a certain angle. Thus you can display two different values assigning them to the

magnitudes that characterize the polar chart: the extension of the radius r and the angle

θ occupied by the sector. These in fact are the polar coordinates (r, θ), an alternative way

of representing functions at the coordinate axes. From the graphical point of view, you

could imagine it as a kind of chart that has characteristics both of the pie chart and of the

bar chart. In fact as the pie chart, the angle of each sector gives percentage information

represented by that category with respect to the total. As for the bar chart, the radial

extension is the numerical value of that category.

So far we have used the standard set of colors using single characters as the color

code (e.g., r to indicate red). In fact you can use any sequence of colors you want. You

have to define a list of string values that contain RGB codes in the #rrggbb format

corresponding to the colors you want.

Chapter 7 Data Visualization with matplotlib

300

Oddly, to get a polar chart you have to use the bar() function and pass the list

containing the angles θ and a list of the radial extension of each sector. The result will be

a polar chart, as shown in Figure 7-53.

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: N = 8

 ...: theta = np.arange(0.,2 * np.pi, 2 * np.pi / N)

 ...: radii = np.array([4,7,5,3,1,5,6,7])

 ...: plt.axes([0.025, 0.025, 0.95, 0.95], polar=True)

 ...: colors = np.array(['#4bb2c5', '#c5b47f', '#EAA228', '#579575',

'#839557', '#958c12', '#953579', '#4b5de4'])

 ...: bars = plt.bar(theta, radii, width=(2*np.pi/N), bottom=0.0,

color=colors)

Figure 7-53. A polar chart

Chapter 7 Data Visualization with matplotlib

301

Figure 7-54. A polar chart with another sequence of colors

In this example, you have defined the sequence of colors using the format

#rrggbb, but you can also specify a sequence of colors as strings with their actual name

(see Figure 7-54).

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: N = 8

 ...: theta = np.arange(0.,2 * np.pi, 2 * np.pi / N)

 ...: radii = np.array([4,7,5,3,1,5,6,7])

 ...: plt.axes([0.025, 0.025, 0.95, 0.95], polar=True)

 ...: colors = np.array(['lightgreen', 'darkred', 'navy', 'brown',

'violet', 'plum', 'yellow', 'darkgreen'])

 ...: bars = plt.bar(theta, radii, width=(2*np.pi/N), bottom=0.0,

color=colors)

Chapter 7 Data Visualization with matplotlib

302

 The mplot3d Toolkit
The mplot3d toolkit is included with all standard installations of matplotlib and allows

you to extend the capabilities of visualization to 3D data. If the figure is displayed in a

separate window, you can rotate the axes of the three-dimensional representation with

the mouse.

With this package you are still using the Figure object, only that instead of the Axes

object you will define a new kind of object, called Axes3D, and introduced by this toolkit.

Thus, you need to add a new import to the code, if you want to use the Axes3D object.

from mpl_toolkits.mplot3d import Axes3D

 3D Surfaces
In a previous section, you used the contour plot to represent the three-dimensional

surfaces through the level lines. Using the mplot3D package, surfaces can be drawn

directly in 3D. In this example, you will use the same function z = f (x, y) you have used in

the contour map.

Once you have calculated the meshgrid, you can view the surface with the plot_

surface() function. A three-dimensional blue surface will appear, as in Figure 7-55.

In []: from mpl_toolkits.mplot3d import Axes3D

 ...: import matplotlib.pyplot as plt

 ...: fig = plt.figure()

 ...: ax = Axes3D(fig)

 ...: X = np.arange(-2,2,0.1)

 ...: Y = np.arange(-2,2,0.1)

 ...: X,Y = np.meshgrid(X,Y)

 ...: def f(x,y):

 ...: return (1 - y**5 + x**5)*np.exp(-x**2-y**2)

 ...: ax.plot_surface(X,Y,f(X,Y), rstride=1, cstride=1)

Chapter 7 Data Visualization with matplotlib

303

A 3D surface stands out most by changing the color map, for example by setting the

cmap kwarg. You can also rotate the surface using the view_init() function. In fact, this

function adjusts the view point from which you see the surface, changing the two kwargs

called elev and azim. Through their combination you can get the surface displayed from

any angle. The first kwarg adjusts the height at which the surface is seen, while azim

adjusts the angle of rotation of the surface.

For instance, you can change the color map using plt.cm.hot and moving the view

point to elev=30 and azim=125. The result is shown in Figure 7-56.

In []: from mpl_toolkits.mplot3d import Axes3D

 ...: import matplotlib.pyplot as plt

 ...: fig = plt.figure()

 ...: ax = Axes3D(fig)

 ...: X = np.arange(-2,2,0.1)

 ...: Y = np.arange(-2,2,0.1)

 ...: X,Y = np.meshgrid(X,Y)

 ...: def f(x,y):

 return (1 - y**5 + x**5)*np.exp(-x**2-y**2)

 ...: ax.plot_surface(X,Y,f(X,Y), rstride=1, cstride=1, cmap=plt.cm.hot)

 ...: ax.view_init(elev=30,azim=125)

Figure 7-55. A 3D surface can be represented with the mplot3d toolkit

Chapter 7 Data Visualization with matplotlib

304

 Scatter Plots in 3D
The mode most used among all 3D views remains the 3D scatter plot. With this type of

visualization, you can identify if the points follow particular trends, but above all if they

tend to cluster.

In this case, you will use the scatter() function as the 2D case but applied on the

Axes3D object. By doing this, you can visualize different series, expressed by the calls to

the scatter() function, all together in the same 3D representation (see Figure 7-57).

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: from mpl_toolkits.mplot3d import Axes3D

 ...: xs = np.random.randint(30,40,100)

 ...: ys = np.random.randint(20,30,100)

 ...: zs = np.random.randint(10,20,100)

 ...: xs2 = np.random.randint(50,60,100)

 ...: ys2 = np.random.randint(30,40,100)

 ...: zs2 = np.random.randint(50,70,100)

 ...: xs3 = np.random.randint(10,30,100)

Figure 7-56. The 3D surface can be rotated and observed from a higher viewpoint

Chapter 7 Data Visualization with matplotlib

305

Figure 7-57. This 3D scatter plot shows three different clusters

 ...: ys3 = np.random.randint(40,50,100)

 ...: zs3 = np.random.randint(40,50,100)

 ...: fig = plt.figure()

 ...: ax = Axes3D(fig)

 ...: ax.scatter(xs,ys,zs)

 ...: ax.scatter(xs2,ys2,zs2,c='r',marker='^')

 ...: ax.scatter(xs3,ys3,zs3,c='g',marker='*')

 ...: ax.set_xlabel('X Label')

 ...: ax.set_ylabel('Y Label')

 ...: ax.set_zlabel('Z Label')

Out[34]: <matplotlib.text.Text at 0xe1c2438>

Chapter 7 Data Visualization with matplotlib

306

 Bar Charts in 3D
Another type of 3D plot widely used in data analysis is the 3D bar chart. Also in this case,

you use the bar() function applied to the object Axes3D. If you define multiple series,

you can accumulate several calls to the bar() function in the same 3D visualization

(see Figure 7-58).

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: from mpl_toolkits.mplot3d import Axes3D

 ...: x = np.arange(8)

 ...: y = np.random.randint(0,10,8)

 ...: y2 = y + np.random.randint(0,3,8)

 ...: y3 = y2 + np.random.randint(0,3,8)

 ...: y4 = y3 + np.random.randint(0,3,8)

 ...: y5 = y4 + np.random.randint(0,3,8)

 ...: clr = ['#4bb2c5', '#c5b47f', '#EAA228', '#579575', '#839557',

'#958c12', '#953579', '#4b5de4']

 ...: fig = plt.figure()

 ...: ax = Axes3D(fig)

 ...: ax.bar(x,y,0,zdir='y',color=clr)

 ...: ax.bar(x,y2,10,zdir='y',color=clr)

 ...: ax.bar(x,y3,20,zdir='y',color=clr)

 ...: ax.bar(x,y4,30,zdir='y',color=clr)

 ...: ax.bar(x,y5,40,zdir='y',color=clr)

 ...: ax.set_xlabel('X Axis')

 ...: ax.set_ylabel('Y Axis')

 ...: ax.set_zlabel('Z Axis')

 ...: ax.view_init(elev=40)

Chapter 7 Data Visualization with matplotlib

307

 Multi-Panel Plots
So far you’ve had the chance to see different ways of representing data through a chart. You

saw how to see more charts in the same figure by separating them with subplots. In this

section, you will deepen your understanding of this topic by analyzing more complex cases.

 Display Subplots Within Other Subplots
Now an even more advanced method will be explained: the ability to view charts within

others, enclosed within frames. Since we are talking of frames, i.e., Axes objects, you

need to separate the main Axes (i.e., the general chart) from the frame you want to add

that will be another instance of Axes. To do this, you use the figures() function to

get the Figure object on which you will define two different Axes objects using the

add_axes() function. See the result of this example in Figure 7-59.

In []: import matplotlib.pyplot as plt

 ...: fig = plt.figure()

 ...: ax = fig.add_axes([0.1,0.1,0.8,0.8])

 ...: inner_ax = fig.add_axes([0.6,0.6,0.25,0.25])

Figure 7-58. A 3D bar chart

Chapter 7 Data Visualization with matplotlib

308

Figure 7-59. A subplot is displayed within another plot

To better understand the effect of this mode of display, you can fill the previous Axes

with real data, as shown in Figure 7-60.

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: fig = plt.figure()

 ...: ax = fig.add_axes([0.1,0.1,0.8,0.8])

 ...: inner_ax = fig.add_axes([0.6,0.6,0.25,0.25])

 ...: x1 = np.arange(10)

 ...: y1 = np.array([1,2,7,1,5,2,4,2,3,1])

 ...: x2 = np.arange(10)

 ...: y2 = np.array([1,3,4,5,4,5,2,6,4,3])

 ...: ax.plot(x1,y1)

 ...: inner_ax.plot(x2,y2)

Out[95]: [<matplotlib.lines.Line2D at 0x14acf6d8>]

Chapter 7 Data Visualization with matplotlib

309

 Grids of Subplots
You have already seen the creation of subplots. It is quite simple to add subplots using

the subplots() function and by dividing a plot into sectors. matplotlib allows you to

manage even more complex cases using another function called GridSpec(). This

subdivision allows splitting the drawing area into a grid of sub-areas, to which you can

assign one or more of them to each subplot, so that in the end you can obtain subplots

with different sizes and orientations, as you can see in Figure 7-61.

In []: import matplotlib.pyplot as plt

 ...: gs = plt.GridSpec(3,3)

 ...: fig = plt.figure(figsize=(6,6))

 ...: fig.add_subplot(gs[1,:2])

 ...: fig.add_subplot(gs[0,:2])

 ...: fig.add_subplot(gs[2,0])

 ...: fig.add_subplot(gs[:2,2])

 ...: fig.add_subplot(gs[2,1:])

Out[97]: <matplotlib.axes._subplots.AxesSubplot at 0x12717438>

Figure 7-60. A more realistic visualization of a subplot within another plot

Chapter 7 Data Visualization with matplotlib

310

Figure 7-61. Subplots with different sizes can be defined on a grid of sub- areas

Now that it’s clear to you how to manage the grid by assigning the various sectors

to the subplot, it’s time to see how to use these subplots. In fact, you can use the Axes

object returned by each add_subplot() function to call the plot() function to draw the

corresponding plot (see Figure 7-62).

In []: import matplotlib.pyplot as plt

 ...: import numpy as np

 ...: gs = plt.GridSpec(3,3)

 ...: fig = plt.figure(figsize=(6,6))

 ...: x1 = np.array([1,3,2,5])

 ...: y1 = np.array([4,3,7,2])

 ...: x2 = np.arange(5)

Chapter 7 Data Visualization with matplotlib

311

 ...: y2 = np.array([3,2,4,6,4])

 ...: s1 = fig.add_subplot(gs[1,:2])

 ...: s1.plot(x,y,'r')

 ...: s2 = fig.add_subplot(gs[0,:2])

 ...: s2.bar(x2,y2)

 ...: s3 = fig.add_subplot(gs[2,0])

 ...: s3.barh(x2,y2,color='g')

 ...: s4 = fig.add_subplot(gs[:2,2])

 ...: s4.plot(x2,y2,'k')

 ...: s5 = fig.add_subplot(gs[2,1:])

 ...: s5.plot(x1,y1,'b^',x2,y2,'yo')

Figure 7-62. A grid of subplots can display many plots at the same time

Chapter 7 Data Visualization with matplotlib

312

 Conclusions
In this chapter, you received all the fundamental aspects of the matplotlib library,

and through a series of examples, you have learned about the basic tools for handling

data visualization. You have become familiar with various examples of how to develop

different types of charts with a few lines of code.

With this chapter, we conclude the part about the libraries that provides the basic

tools to perform data analysis. In the next chapter, you will begin to treat topics most

closely related to data analysis.

Chapter 7 Data Visualization with matplotlib

313
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_8

CHAPTER 8

Machine Learning
with scikit-learn
In the chain of processes that make up data analysis, the construction phase of predictive

models and their validation are done by a powerful library called scikit-learn. In

this chapter, you see some examples that illustrate the basic construction of predictive

models with some different methods.

 The scikit-learn Library
scikit-learn is a Python module that integrates many of machine learning algorithms.

This library was developed initially by Cournapeu in 2007, but the first real release

was in 2010.

This library is part of the SciPy (Scientific Python) group, a set of libraries created for

scientific computing and especially for data analysis, many of which are discussed in this

book. Generally these libraries are defined as SciKits, hence the first part of the name of

this library. The second part of the library’s name is derived from machine learning, the

discipline pertaining to this library.

 Machine Learning
Machine learning is a discipline that deals with the study of methods for pattern

recognition in datasets undergoing data analysis. In particular, it deals with the

development of algorithms that learn from data and make predictions. Each

methodology is based on building a specific model.

314

There are very many methods that belong to the learning machine, each with its

unique characteristics, which are specific to the nature of the data and the predictive

model that you want to build. The choice of which method is to be applied is called a

learning problem.

The data to be subjected to a pattern in the learning phase can be arrays composed

by a single value per element, or by a multivariate value. These values are often referred

to as features or attributes.

 Supervised and Unsupervised Learning
Depending on the type of the data and the model to be built, you can separate the

learning problems into two broad categories:

 Supervised Learning

They are the methods in which the training set contains additional attributes that

you want to predict (the target). Thanks to these values, you can instruct the model to

provide similar values when you have to submit new values (the test set).

• Classification—The data in the training set belong to two or more

classes or categories; then, the data, already being labeled, allow you

to teach the system to recognize the characteristics that distinguish

each class. When you will need to consider a new value unknown

to the system, the system will evaluate its class according to its

characteristics.

• Regression—When the value to be predicted is a continuous variable.

The simplest case to understand is when you want to find the line

that describes the trend from a series of points represented in a

scatterplot.

 Unsupervised Learning

These are the methods in which the training set consists of a series of input values x

without any corresponding target value.

• Clustering—The goal of these methods is to discover groups of similar

examples in a dataset.

Chapter 8 MaChine Learning with sCikit-Learn

315

• Dimensionality reduction—Reduction of a high-dimensional dataset

to one with only two or three dimensions is useful not just for data

visualization, but for converting data of very high dimensionality

into data of much lower dimensionality such that each of the lower

dimensions conveys much more information.

In addition to these two main categories, there is a further group of methods that

have the purpose of validation and evaluation of the models.

 Training Set and Testing Set
Machine learning enables learning some properties by a model from a dataset and

applying them to new data. This is because a common practice in machine learning is

to evaluate an algorithm. This valuation consists of splitting the data into two parts, one

called the training set, with which we will learn the properties of the data, and the other

called the testing set, on which to test these properties.

 Supervised Learning with scikit-learn
In this chapter, you will see a number of examples of supervised learning.

• Classification, using the Iris Dataset

• K-Nearest Neighbors Classifier

• Support Vector Machines (SVC)

• Regression, using the Diabetes Dataset

• Linear Regression

• Support Vector Machines (SVR)

Supervised learning consists of learning possible patterns between two or more

features reading values from a training set; the learning is possible because the training

set contains known results (target or labels). All models in scikit-learn are referred to as

supervised estimators, using the fit(x, y) function that makes their training.

x comprises the features observed, while y indicates the target. Once the estimator has

carried out the training, it will be able to predict the value of y for any new observation x not

labeled. This operation will make it through the predict(x) function.

Chapter 8 MaChine Learning with sCikit-Learn

316

 The Iris Flower Dataset
The Iris Flower Dataset is a particular dataset used for the first time by Sir Ronald Fisher

in 1936. It is often also called Anderson Iris Dataset, after the person who collected the

data directly measuring the size of the various parts of the iris flowers. In this dataset,

data from three different species of iris (Iris silky, virginica Iris, and Iris versicolor) are

collected and these data correspond to the length and width of the sepals and the length

and width of the petals (see Figure 8-1).

Figure 8-1. Iris versicolor and the petal and sepal width and length

This dataset is currently being used as a good example for many types of analysis,

in particular for the problems of classification, which can be approached by means of

machine learning methodologies. It is no coincidence then that this dataset is provided

along with the scikit-learn library as a 150x4 NumPy array.

Now you will study this dataset in detail importing it in the IPython QtConsole or in a

normal Python session.

Chapter 8 MaChine Learning with sCikit-Learn

317

In []: from sklearn import datasets

 ...: iris = datasets.load_iris()

In this way you loaded all the data and metadata concerning the Iris Dataset in the

iris variable. In order to see the values of the data collected in it, it is sufficient to call

the attribute data of the variable iris.

In []: iris.data

Out[]:

array([[5.1, 3.5, 1.4, 0.2],

 [4.9, 3. , 1.4, 0.2],

 [4.7, 3.2, 1.3, 0.2],

 [4.6, 3.1, 1.5, 0.2],

 ...

As you can see, you will get an array of 150 elements, each containing four numeric

values: the size of sepals and petals respectively.

To know instead what kind of flower belongs each item you will refer to the target

attribute.

In []: iris.target

Out[]:

array([0, 0,

 0,

 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1,

 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

You obtain 150 items with three possible integer values (0, 1, and 2), which

correspond to the three species of iris. To know the correspondence between the species

and number, you have to call the target_names attribute.

In []: iris.target_names

Out[]:

array(['setosa', 'versicolor', 'virginica'],

 dtype='|S10')

Chapter 8 MaChine Learning with sCikit-Learn

318

To better understand this dataset you can use the matplotlib library, using the

techniques you learned in Chapter 7. Therefore create a scatterplot that displays the

three different species in three different colors. The x-axis will represent the length of the

sepal while the y-axis will represent the width of the sepal.

In []: import matplotlib.pyplot as plt

 ...: import matplotlib.patches as mpatches

 ...: from sklearn import datasets

 ...:

 ...: iris = datasets.load_iris()

 ...: x = iris.data[:,0] #X-Axis - sepal length

 ...: y = iris.data[:,1] #Y-Axis - sepal length

 ...: species = iris.target #Species

 ...:

 ...: x_min, x_max = x.min() - .5,x.max() + .5

 ...: y_min, y_max = y.min() - .5,y.max() + .5

 ...:

 ...: #SCATTERPLOT

 ...: plt.figure()

 ...: plt.title('Iris Dataset - Classification By Sepal Sizes')

 ...: plt.scatter(x,y, c=species)

 ...: plt.xlabel('Sepal length')

 ...: plt.ylabel('Sepal width')

 ...: plt.xlim(x_min, x_max)

 ...: plt.ylim(y_min, y_max)

 ...: plt.xticks(())

 ...: plt.yticks(())

 ...: plt.show()

As a result, you get the scatterplot shown in Figure 8-2. The blue ones are the Iris

setosa, flowers, green ones are the Iris versicolor, and red ones are the Iris virginica.

From Figure 8-2 you can see how the Iris setosa features differ from the other two,

forming a cluster of blue dots separate from the others.

Chapter 8 MaChine Learning with sCikit-Learn

319

Try to follow the same procedure, but this time using the other two variables, that is

the measure of the length and width of the petal. You can use the same code and change

just a few values.

In []: import matplotlib.pyplot as plt

 ...: import matplotlib.patches as mpatches

 ...: from sklearn import datasets

 ...:

 ...: iris = datasets.load_iris()

 ...: x = iris.data[:,2] #X-Axis - petal length

 ...: y = iris.data[:,3] #Y-Axis - petal length

 ...: species = iris.target #Species

 ...:

 ...: x_min, x_max = x.min() - .5,x.max() + .5

 ...: y_min, y_max = y.min() - .5,y.max() + .5

 ...: #SCATTERPLOT

 ...: plt.figure()

 ...: plt.title('Iris Dataset - Classification By Petal Sizes', size=14)

 ...: plt.scatter(x,y, c=species)

 ...: plt.xlabel('Petal length')

 ...: plt.ylabel('Petal width')

Figure 8-2. The different species of irises are shown with different colors

Chapter 8 MaChine Learning with sCikit-Learn

320

 ...: plt.xlim(x_min, x_max)

 ...: plt.ylim(y_min, y_max)

 ...: plt.xticks(())

 ...: plt.yticks(())

The result is the scatterplot shown in Figure 8-3. In this case the division between the

three species is much more evident. As you can see, you have three different clusters.

Figure 8-3. The different species of irises are shown with different colors

 The PCA Decomposition
You have seen how the three species could be characterized, taking into account four

measurements of the petals and sepals size. We represented two scatterplots, one for the

petals and one for sepals, but how can you can unify the whole thing? Four dimensions

are a problem that even a Scatterplot 3D is not able to solve.

In this regard a special technique called Principal Component Analysis (PCA) has

been developed. This technique allows you to reduce the number of dimensions of

a system keeping all the information for the characterization of the various points,

the new dimensions generated are called principal components. In our case, so you

can reduce the system from four to three dimensions and then plot the results within

a 3D scatterplot. In this way you can use measures both of sepals and of petals for

characterizing the various species of iris of the test elements in the dataset.

Chapter 8 MaChine Learning with sCikit-Learn

321

The scikit-learn function that allows you to do the dimensional reduction is

the fit_transform() function. It belongs to the PCA object. In order to use it, first you

need to import the PCA sklearn.decomposition module. Then you have to define the

object constructor using PCA() and define the number of new dimensions (principal

components) as a value of the n_components option. In your case, it is 3. Finally you have

to call the fit_transform() function by passing the four-dimensional Iris Dataset as an

argument.

from sklearn.decomposition import PCA

x_reduced = PCA(n_components=3).fit_transform(iris.data)

In addition, in order to visualize the new values you will use a scatterplot 3D using

the mpl_toolkits.mplot3d module of matplotlib. If you don’t remember how to do it,

see the Scatterplot 3D section in Chapter 7.

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from sklearn import datasets

from sklearn.decomposition import PCA

iris = datasets.load_iris()

species = iris.target #Species

x_reduced = PCA(n_components=3).fit_transform(iris.data)

#SCATTERPLOT 3D

fig = plt.figure()

ax = Axes3D(fig)

ax.set_title('Iris Dataset by PCA', size=14)

ax.scatter(x_reduced[:,0],x_reduced[:,1],x_reduced[:,2], c=species)

ax.set_xlabel('First eigenvector')

ax.set_ylabel('Second eigenvector')

ax.set_zlabel('Third eigenvector')

ax.w_xaxis.set_ticklabels(())

ax.w_yaxis.set_ticklabels(())

ax.w_zaxis.set_ticklabels(())

Chapter 8 MaChine Learning with sCikit-Learn

322

The result will be the scatterplot shown in Figure 8-4. The three species of iris are

well characterized with respect to each other to form a cluster.

Figure 8-4. 3D scatterplot with three clusters representative of each species of iris

 K-Nearest Neighbors Classifier
Now, you will perform a classification, and to do this operation with the scikit-learn

library you need a classifier.

Given a new measurement of an iris flower, the task of the classifier is to figure out

to which of the three species it belongs. The simplest possible classifier is the nearest

neighbor. This algorithm will search within the training set for the observation that most

closely approaches the new test sample.

A very important thing to consider at this point are the concepts of training set and

testing set (already seen in Chapter 1). Indeed, if you have only a single dataset of data,

it is important not to use the same data both for the test and for the training. In this

regard, the elements of the dataset are divided into two parts, one dedicated to train the

algorithm and the other to perform its validation.

Chapter 8 MaChine Learning with sCikit-Learn

323

Thus, before proceeding further you have to divide your Iris Dataset into two parts.

However, it is wise to randomly mix the array elements and then make the division. In

fact, often the data may have been collected in a particular order, and in your case the

Iris Dataset contains items sorted by species. So to make a blending of elements of the

dataset you will use a NumPy function called random.permutation(). The mixed dataset

consists of 150 different observations; the first 140 will be used as the training set, the

remaining 10 as the test set.

import numpy as np

from sklearn import datasets

np.random.seed(0)

iris = datasets.load_iris()

x = iris.data

y = iris.target

i = np.random.permutation(len(iris.data))

x_train = x[i[:-10]]

y_train = y[i[:-10]]

x_test = x[i[-10:]]

y_test = y[i[-10:]]

Now you can apply the K-Nearest Neighbor algorithm. Import the

KNeighborsClassifier, call the constructor of the classifier, and then train it with the

fit() function.

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier()

knn.fit(x_train,y_train)

Out[86]:

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',

 metric_params=None, n_neighbors=5, p=2, weights='uniform')

Now that you have a predictive model that consists of the knn classifier, trained by

140 observations, you will find out how it is valid. The classifier should correctly predict

the species of iris of the 10 observations of the test set. In order to obtain the prediction

you have to use the predict() function, which will be applied directly to the predictive

model, knn. Finally, you will compare the results predicted with the actual observed

contained in y_test.

Chapter 8 MaChine Learning with sCikit-Learn

324

knn.predict(x_test)

Out[100]: array([1, 2, 1, 0, 0, 0, 2, 1, 2, 0])

y_test

Out[101]: array([1, 1, 1, 0, 0, 0, 2, 1, 2, 0])

You can see that you obtained a 10% error. Now you can visualize all this using

decision boundaries in a space represented by the 2D scatterplot of sepals.

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

from sklearn import datasets

from sklearn.neighbors import KNeighborsClassifier

iris = datasets.load_iris()

x = iris.data[:,:2] #X-Axis - sepal length-width

y = iris.target #Y-Axis - species

x_min, x_max = x[:,0].min() - .5,x[:,0].max() + .5

y_min, y_max = x[:,1].min() - .5,x[:,1].max() + .5

#MESH

cmap_light = ListedColormap(['#AAAAFF','#AAFFAA','#FFAAAA'])

h = .02

xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

knn = KNeighborsClassifier()

knn.fit(x,y)

Z = knn.predict(np.c_[xx.ravel(),yy.ravel()])

Z = Z.reshape(xx.shape)

plt.figure()

plt.pcolormesh(xx,yy,Z,cmap=cmap_light)

#Plot the training points

plt.scatter(x[:,0],x[:,1],c=y)

plt.xlim(xx.min(),xx.max())

plt.ylim(yy.min(),yy.max())

Out[120]: (1.5, 4.900000000000003)

Chapter 8 MaChine Learning with sCikit-Learn

325

You get a subdivision of the scatterplot in decision boundaries, as shown

in Figure 8- 5.

Figure 8-5. The three decision boundaries are represented by three different colors

You can do the same thing considering the size of the petals.

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

from sklearn import datasets

from sklearn.neighbors import KNeighborsClassifier

iris = datasets.load_iris()

x = iris.data[:,2:4] #X-Axis - petals length-width

y = iris.target #Y-Axis - species

x_min, x_max = x[:,0].min() - .5,x[:,0].max() + .5

y_min, y_max = x[:,1].min() - .5,x[:,1].max() + .5

#MESH

cmap_light = ListedColormap(['#AAAAFF','#AAFFAA','#FFAAAA'])

h = .02

xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

knn = KNeighborsClassifier()

Chapter 8 MaChine Learning with sCikit-Learn

326

knn.fit(x,y)

Z = knn.predict(np.c_[xx.ravel(),yy.ravel()])

Z = Z.reshape(xx.shape)

plt.figure()

plt.pcolormesh(xx,yy,Z,cmap=cmap_light)

#Plot the training points

plt.scatter(x[:,0],x[:,1],c=y)

plt.xlim(xx.min(),xx.max())

plt.ylim(yy.min(),yy.max())

Out[126]: (-0.40000000000000002, 2.9800000000000031)

As shown in Figure 8-6, you will have the corresponding decision boundaries

regarding the characterization of iris flowers taking into account the size of the petals.

Figure 8-6. The decision boundaries on a 2D scatterplot describing the petal sizes

Chapter 8 MaChine Learning with sCikit-Learn

327

 Diabetes Dataset
Among the various datasets available within the scikit-learn library, there is the

diabetes dataset. This dataset was used for the first time in 2004 (Annals of Statistics, by

Efron, Hastie, Johnston, and Tibshirani). Since then it has become an example widely

used to study various predictive models and their effectiveness.

To upload the data contained in this dataset, before you have to import the datasets

module of the scikit-learn library and then you call the load_diabetes() function to

load the dataset into a variable that will be called diabetes.

In []: from sklearn import datasets

 ...: diabetes = datasets.load_diabetes()

This dataset contains physiological data collected on 442 patients and as a corresponding

target an indicator of the disease progression after a year. The physiological data occupy

the first 10 columns with values that indicate respectively the following:

• Age

• Sex

• Body mass index

• Blood pressure

• S1, S2, S3, S4, S5, and S6 (six blood serum measurements)

These measurements can be obtained by calling the data attribute. But going to

check the values in the dataset, you will find values very different from what you would

have expected. For example, we look at the 10 values for the first patient.

diabetes.data[0]

Out[]:

array([0.03807591, 0.05068012, 0.06169621, 0.02187235, -0.0442235 ,

 -0.03482076, -0.04340085, -0.00259226, 0.01990842, -0.01764613])

These values are in fact the result of a processing. Each of the 10 values was mean

centered and subsequently scaled by the standard deviation times the number of

samples. Checking will reveal that the sum of squares of each column is equal to 1. Try

doing this calculation with the age measurements; you will obtain a value very close to 1.

np.sum(diabetes.data[:,0]**2)

Out[143]: 1.0000000000000746

Chapter 8 MaChine Learning with sCikit-Learn

328

Even though these values are normalized and therefore difficult to read, they

continue to express the 10 physiological characteristics and therefore have not lost their

value or statistical information.

As for the indicators of the progress of the disease, that is, the values that must

correspond to the results of your predictions, these are obtainable by means of the

target attribute.

diabetes.target

Out[146]:

array([151., 75., 141., 206., 135., 97., 138., 63., 110.,

 310., 101., 69., 179., 185., 118., 171., 166., 144.,

 97., 168., 68., 49., 68., 245., 184., 202., 137

 . . .

You obtain a series of 442 integer values between 25 and 346.

 Linear Regression: The Least Square Regression
Linear regression is a procedure that uses data contained in the training set to build

a linear model. The most simple is based on the equation of a rect with the two

parameters a and b to characterize it. These parameters will be calculated so as to make

the sum of squared residuals as small as possible.

y = a*x + c

In this expression, x is the training set, y is the target, b is the slope, and c is the

intercept of the rect represented by the model. In scikit-learn, to use the predictive

model for the linear regression, you must import the linear_model module and then

use the manufacturer LinearRegression() constructor to create the predictive model,

which you call linreg.

from sklearn import linear_model

linreg = linear_model.LinearRegression()

To practice with an example of linear regression you can use the diabetes dataset

described earlier. First you will need to break the 442 patients into a training set

(composed of the first 422 patients) and a test set (the last 20 patients).

Chapter 8 MaChine Learning with sCikit-Learn

329

from sklearn import datasets

diabetes = datasets.load_diabetes()

x_train = diabetes.data[:-20]

y_train = diabetes.target[:-20]

x_test = diabetes.data[-20:]

y_test = diabetes.target[-20:]

Now apply the training set to the predictive model through the use of the fit() function.

linreg.fit(x_train,y_train)

Out[]: LinearRegression(copy_X=True, fit_intercept=True, normalize=False)

Once the model is trained you can get the 10 b coefficients calculated for each

physiological variable, using the coef_ attribute of the predictive model.

linreg.coef_

Out[164]:

array([3.03499549e-01, -2.37639315e+02, 5.10530605e+02,

 3.27736980e+02, -8.14131709e+02, 4.92814588e+02,

 1.02848452e+02, 1.84606489e+02, 7.43519617e+02,

 7.60951722e+01])

If you apply the test set to the linreg prediction model you will get a series of targets

to be compared with the values actually observed.

linreg.predict(x_test)

Out[]:

array([197.61846908, 155.43979328, 172.88665147, 111.53537279,

 164.80054784, 131.06954875, 259.12237761, 100.47935157,

 117.0601052 , 124.30503555, 218.36632793, 61.19831284,

 132.25046751, 120.3332925 , 52.54458691, 194.03798088,

 102.57139702, 123.56604987, 211.0346317 , 52.60335674])

y_test

Out[]:

array([233., 91., 111., 152., 120., 67., 310., 94., 183.,

 66., 173., 72., 49., 64., 48., 178., 104., 132.,

 220., 57.])

Chapter 8 MaChine Learning with sCikit-Learn

330

However, a good indicator of what prediction should be perfect is the variance. The

closer the variance is to 1 the more perfect the prediction.

linreg.score(x_test, y_test)

Out[]: 0.58507530226905713

Now you will start with the linear regression, taking into account a single

physiological factor, for example, you can start from age.

import numpy as np

import matplotlib.pyplot as plt

from sklearn import linear_model

from sklearn import datasets

diabetes = datasets.load_diabetes()

x_train = diabetes.data[:-20]

y_train = diabetes.target[:-20]

x_test = diabetes.data[-20:]

y_test = diabetes.target[-20:]

x0_test = x_test[:,0]

x0_train = x_train[:,0]

x0_test = x0_test[:,np.newaxis]

x0_train = x0_train[:,np.newaxis]

linreg = linear_model.LinearRegression()

linreg.fit(x0_train,y_train)

y = linreg.predict(x0_test)

plt.scatter(x0_test,y_test,color='k')

plt.plot(x0_test,y,color='b',linewidth=3)

Out[230]: [<matplotlib.lines.Line2D at 0x380b1908>]

Figure 8-7 shows the blue line representing the linear correlation between the ages

of patients and the disease progression.

Chapter 8 MaChine Learning with sCikit-Learn

331

Figure 8-7. A linear regression represents a linear correlation between a feature
and the targets

Actually, you have 10 physiological factors within the diabetes dataset. Therefore,

to have a more complete picture of all the training set, you can make a linear regression

for every physiological feature, creating 10 models and seeing the result for each of them

through a linear chart.

import numpy as np

import matplotlib.pyplot as plt

from sklearn import linear_model

from sklearn import datasets

diabetes = datasets.load_diabetes()

x_train = diabetes.data[:-20]

y_train = diabetes.target[:-20]

x_test = diabetes.data[-20:]

y_test = diabetes.target[-20:]

plt.figure(figsize=(8,12))

for f in range(0,10):

 xi_test = x_test[:,f]

 xi_train = x_train[:,f]

 xi_test = xi_test[:,np.newaxis]

Chapter 8 MaChine Learning with sCikit-Learn

332

 xi_train = xi_train[:,np.newaxis]

 linreg.fit(xi_train,y_train)

 y = linreg.predict(xi_test)

 plt.subplot(5,2,f+1)

 plt.scatter(xi_test,y_test,color='k')

 plt.plot(xi_test,y,color='b',linewidth=3)

Figure 8-8 shows 10 linear charts, each of which represents the correlation between a

physiological factor and the progression of diabetes.

Chapter 8 MaChine Learning with sCikit-Learn

333

Figure 8-8. Ten linear charts showing the correlations between physiological
factors and the progression of diabetes

Chapter 8 MaChine Learning with sCikit-Learn

334

 Support Vector Machines (SVMs)
Support Vector Machines are a number of machine learning techniques that were first

developed in the AT&T laboratories by Vapnik and colleagues in the early 90s. The

basis of this class of procedures is in fact an algorithm called Support Vector, which is a

generalization of a previous algorithm called Generalized Portrait, developed in Russia

in 1963 by Vapnik as well.

In simple words, the SVM classifiers are binary or discriminating models, working

on two classes of differentiation. Their main task is basically to discriminate against

new observations between two classes. During the learning phase, these classifiers

project the observations in a multidimensional space called decisional space and build

a separation surface called the decision boundary that divides this space into two areas

of belonging. In the simplest case, that is, the linear case, the decision boundary will be

represented by a plane (in 3D) or by a straight line (in 2D). In more complex cases, the

separation surfaces are curved shapes with increasingly articulated shapes.

The SVM can be used both in regression with the SVR (Support Vector Regression)

and in classification with the SVC (Support Vector Classification).

 Support Vector Classification (SVC)
If you want to better understand how this algorithm works, you can start by referring to the

simplest case, that is the linear 2D case, where the decision boundary will be a straight line

separating into two parts the decisional area. Take for example a simple training set where

some points are assigned to two different classes. The training set will consist of 11 points

(observations) with two different attributes that will have values between 0 and 4. These

values will be contained within a NumPy array called x. Their belonging to one of two

classes will be defined by 0 or 1 values contained in another array called y.

Visualize distribution of these points in space with a scatterplot which will then be

defined as a decision space (see Figure 8-9).

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm

x = np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],

 [2,1],[3,1],[3,2],[3.5,1],[3.5,3]])

Chapter 8 MaChine Learning with sCikit-Learn

335

Figure 8-9. The scatterplot of the training set displays the decision space

y = [0]*6 + [1]*5

plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)

Out[360]: <matplotlib.collections.PathCollection at 0x545634a8>

Now that you have defined the training set, you can apply the SVC (Support Vector

Classification) algorithm. This algorithm will create a line (decision boundary) in order

to divide the decision area into two parts (see Figure 8-10), and this straight line will be

placed so as to maximize its distance of closest observations contained in the training

set. This condition should produce two different portions in which all points of a same

class should be contained.

Then you apply the SVC algorithm to the training set and to do so, first you define

the model with the SVC() constructor defining the kernel as linear. (A kernel is a class of

algorithms for pattern analysis.) Then you will use the fit() function with the training

set as an argument. Once the model is trained you can plot the decision boundary

with the decision_function() function. Then you draw the scatterplot and provide a

different color to the two portions of the decision space.

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm

x = np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],

 [2,1],[3,1],[3,2],[3.5,1],[3.5,3]])

Chapter 8 MaChine Learning with sCikit-Learn

336

y = [0]*6 + [1]*5

svc = svm.SVC(kernel='linear').fit(x,y)

X,Y = np.mgrid[0:4:200j,0:4:200j]

Z = svc.decision_function(np.c_[X.ravel(),Y.ravel()])

Z = Z.reshape(X.shape)

plt.contourf(X,Y,Z > 0,alpha=0.4)

plt.contour(X,Y,Z,colors=['k'], linestyles=['-'],levels=[0])

plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)

Out[363]: <matplotlib.collections.PathCollection at 0x54acae10>

In Figure 8-10, you can see the two portions containing the two classes. It can be said

that the division is successful except for a blue dot in the red portion.

Figure 8-10. The decision area is split into two portions

So once the model has been trained, it is simple to understand how the predictions

operate. Graphically, depending on the position occupied by the new observation, you

will know its corresponding membership in one of the two classes.

Instead, from a more programmatic point of view, the predict() function will return the

number of the corresponding class of belonging (0 for class in blue, 1 for the class in red).

Chapter 8 MaChine Learning with sCikit-Learn

337

svc.predict([[1.5,2.5]])

Out[56]: array([0])

svc.predict([[2.5,1]])

Out[57]: array([1])

A related concept with the SVC algorithm is regularization. It is set by the parameter

C: a small value of C means that the margin is calculated using many or all of the

observations around the line of separation (greater regularization), while a large value

of C means that the margin is calculated on the observations near to the line separation

(lower regularization). Unless otherwise specified, the default value of C is equal to 1.

You can highlight points that participated in the margin calculation, identifying them

through the support_vectors array.

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm

x = np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],

 [2,1],[3,1],[3,2],[3.5,1],[3.5,3]])

y = [0]*6 + [1]*5

svc = svm.SVC(kernel='linear',C=1).fit(x,y)

X,Y = np.mgrid[0:4:200j,0:4:200j]

Z = svc.decision_function(np.c_[X.ravel(),Y.ravel()])

Z = Z.reshape(X.shape)

plt.contourf(X,Y,Z > 0,alpha=0.4)

plt.contour(X,Y,Z,colors=['k','k','k'], linestyles=['--','-','--'],

levels=[-1,0,1])

plt.scatter(svc.support_vectors_[:,0],svc.support_vectors_[:,1],s=120,

facecolors='r')

plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)

Out[23]: <matplotlib.collections.PathCollection at 0x177066a0>

These points are represented by rimmed circles in the scatterplot. Furthermore, they

will be within an evaluation area in the vicinity of the separation line (see the dashed

lines in Figure 8-11).

Chapter 8 MaChine Learning with sCikit-Learn

338

To see the effect on the decision boundary, you can restrict the value to C = 0.1. Let’s

see how many points will be taken into consideration.

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm

x = np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],

 [2,1],[3,1],[3,2],[3.5,1],[3.5,3]])

y = [0]*6 + [1]*5

svc = svm.SVC(kernel='linear',C=0.1).fit(x,y)

X,Y = np.mgrid[0:4:200j,0:4:200j]

Z = svc.decision_function(np.c_[X.ravel(),Y.ravel()])

Z = Z.reshape(X.shape)

plt.contourf(X,Y,Z > 0,alpha=0.4)

plt.contour(X,Y,Z,colors=['k','k','k'], linestyles=['--','-','--

'],levels=[-1,0,1])

plt.scatter(svc.support_vectors_[:,0],svc.support_vectors_

[:,1],s=120,facecolors='w')

plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)

Out[24]: <matplotlib.collections.PathCollection at 0x1a01ecc0>

Figure 8-11. The number of points involved in the calculation depends on the C
parameter

Chapter 8 MaChine Learning with sCikit-Learn

339

Figure 8-12. The number of points involved in the calculation grows with
decreasing of C

The points taken into consideration are increased and consequently the separation

line (decision boundary) has changed orientation. But now there are two points that are

in the wrong decision areas (see Figure 8-12).

 Nonlinear SVC
So far you have seen the SVC linear algorithm defining a line of separation that was

intended to split the two classes. There are also more complex SVC algorithms that

can establish curves (2D) or curved surfaces (3D) based on the same principles of

maximizing the distances between the points closest to the surface. Let’s see the system

using a polynomial kernel.

As the name implies, you can define a polynomial curve that separates the area

decision in two portions. The degree of the polynomial can be defined by the degree

option. Even in this case C is the coefficient of regularization. So try to apply an SVC

algorithm with a polynomial kernel of third degree and with a C coefficient equal to 1.

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm

x = np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],

Chapter 8 MaChine Learning with sCikit-Learn

340

 [2,1],[3,1],[3,2],[3.5,1],[3.5,3]])

y = [0]*6 + [1]*5

svc = svm.SVC(kernel='poly',C=1, degree=3).fit(x,y)

X,Y = np.mgrid[0:4:200j,0:4:200j]

Z = svc.decision_function(np.c_[X.ravel(),Y.ravel()])

Z = Z.reshape(X.shape)

plt.contourf(X,Y,Z > 0,alpha=0.4)

plt.contour(X,Y,Z,colors=['k','k','k'], linestyles=['--','-','--

'],levels=[-1,0,1])

plt.scatter(svc.support_vectors_[:,0],svc.support_vectors_

[:,1],s=120,facecolors='w')

plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)

Out[34]: <matplotlib.collections.PathCollection at 0x1b6a9198>

As you can see, you get the situation shown in Figure 8-13.

Figure 8-13. The decision space using an SVC with a polynomial kernel

Another type of nonlinear kernel is the Radial Basis Function (RBF). In this case the

separation curves tend to define the zones radially with respect to the observation points

of the training set.

Chapter 8 MaChine Learning with sCikit-Learn

341

Figure 8-14. The decisional area using an SVC with the RBF kernel

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm

x = np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],

 [2,1],[3,1],[3,2],[3.5,1],[3.5,3]])

y = [0]*6 + [1]*5

svc = svm.SVC(kernel='rbf', C=1, gamma=3).fit(x,y)

X,Y = np.mgrid[0:4:200j,0:4:200j]

Z = svc.decision_function(np.c_[X.ravel(),Y.ravel()])

Z = Z.reshape(X.shape)

plt.contourf(X,Y,Z > 0,alpha=0.4)

plt.contour(X,Y,Z,colors=['k','k','k'], linestyles=['--','-','--

'],levels=[-1,0,1])

plt.scatter(svc.support_vectors_[:,0],svc.support_vectors_

[:,1],s=120,facecolors='w')

plt.scatter(x[:,0],x[:,1],c=y,s=50,alpha=0.9)

Out[43]: <matplotlib.collections.PathCollection at 0x1cb8d550>

In Figure 8-14, you can see the two portions of the decision with all points of the

training set correctly positioned.

Chapter 8 MaChine Learning with sCikit-Learn

342

 Plotting Different SVM Classifiers Using the Iris Dataset
The SVM example that you just saw is based on a very simple dataset. This section

uses more complex datasets for a classification problem with SVC. In fact, it uses the

previously used dataset: the Iris Dataset.

The SVC algorithm used before learned from a training set containing only two

classes. In this case you will extend the case to three classifications, as the Iris Dataset is

split into three classes, corresponding to the three different species of flowers.

In this case the decision boundaries intersect each other, subdividing the decision

area (in the case 2D) or the decision volume (3D) in several portions.

Both linear models have linear decision boundaries (intersecting hyperplanes),

while models with nonlinear kernels (polynomial or Gaussian RBF) have nonlinear

decision boundaries. These boundaries are more flexible with figures that are dependent

on the type of kernel and its parameters.

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm, datasets

iris = datasets.load_iris()

x = iris.data[:,:2]

y = iris.target

h = .05

svc = svm.SVC(kernel='linear',C=1.0).fit(x,y)

x_min,x_max = x[:,0].min() - .5, x[:,0].max() + .5

y_min,y_max = x[:,1].min() - .5, x[:,1].max() + .5

h = .02

X, Y = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max,h))

Z = svc.predict(np.c_[X.ravel(),Y.ravel()])

Z = Z.reshape(X.shape)

plt.contourf(X,Y,Z,alpha=0.4)

plt.contour(X,Y,Z,colors='k')

plt.scatter(x[:,0],x[:,1],c=y)

Out[49]: <matplotlib.collections.PathCollection at 0x1f2bd828>

Chapter 8 MaChine Learning with sCikit-Learn

343

Figure 8-15. The decisional boundaries split the decisional area into three
different portions

In Figure 8-15, the decision space is divided into three portions separated by

decisional boundaries.

Now it’s time to apply a nonlinear kernel for generating nonlinear decision

boundaries, such as the polynomial kernel.

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm, datasets

iris = datasets.load_iris()

x = iris.data[:,:2]

y = iris.target

h = .05

svc = svm.SVC(kernel='poly',C=1.0,degree=3).fit(x,y)

x_min,x_max = x[:,0].min() - .5, x[:,0].max() + .5

y_min,y_max = x[:,1].min() - .5, x[:,1].max() + .5

h = .02

X, Y = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max,h))

Chapter 8 MaChine Learning with sCikit-Learn

344

Z = svc.predict(np.c_[X.ravel(),Y.ravel()])

Z = Z.reshape(X.shape)

plt.contourf(X,Y,Z,alpha=0.4)

plt.contour(X,Y,Z,colors='k')

plt.scatter(x[:,0],x[:,1],c=y)

Out[50]: <matplotlib.collections.PathCollection at 0x1f4cc4e0>

Figure 8-16 shows how the polynomial decision boundaries split the area in a very

different way compared to the linear case.

Figure 8-16. In the polynomial case the blue portion is not directly connected with
the red portion

Now you can apply the RBF kernel to see the difference in the distribution of areas.

svc = svm.SVC(kernel='rbf', gamma=3, C=1.0).fit(x,y)

Figure 8-17 shows how the RBF kernel generates radial areas.

Chapter 8 MaChine Learning with sCikit-Learn

345

Figure 8-17. The kernel RBF defines radial decisional areas

 Support Vector Regression (SVR)
The SVC method can be extended to solve even regression problems. This method is

called Support Vector Regression.

The model produced by SVC actually does not depend on the complete training set,

but uses only a subset of elements, i.e., those closest to the decisional boundary. In a

similar way, the model produced by SVR also depends only on a subset of the training set.

We will demonstrate how the SVR algorithm will use the diabetes dataset that

you have already seen in this chapter. By way of example, you will refer only to the

third physiological data. You will perform three different regressions, a linear and

two nonlinear (polynomial). The linear case will produce a straight line as the linear

predictive model is very similar to the linear regression seen previously, whereas

polynomial regressions will be built of the second and third degrees. The SVR() function

is almost identical to the SVC()function seen previously.

The only aspect to consider is that the test set of data must be sorted in ascending

order.

Chapter 8 MaChine Learning with sCikit-Learn

346

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm

from sklearn import datasets

diabetes = datasets.load_diabetes()

x_train = diabetes.data[:-20]

y_train = diabetes.target[:-20]

x_test = diabetes.data[-20:]

y_test = diabetes.target[-20:]

x0_test = x_test[:,2]

x0_train = x_train[:,2]

x0_test = x0_test[:,np.newaxis]

x0_train = x0_train[:,np.newaxis]

x0_test.sort(axis=0)

x0_test = x0_test*100

x0_train = x0_train*100

svr = svm.SVR(kernel='linear',C=1000)

svr2 = svm.SVR(kernel='poly',C=1000,degree=2)

svr3 = svm.SVR(kernel='poly',C=1000,degree=3)

svr.fit(x0_train,y_train)

svr2.fit(x0_train,y_train)

svr3.fit(x0_train,y_train)

y = svr.predict(x0_test)

y2 = svr2.predict(x0_test)

y3 = svr3.predict(x0_test)

plt.scatter(x0_test,y_test,color='k')

plt.plot(x0_test,y,color='b')

plt.plot(x0_test,y2,c='r')

plt.plot(x0_test,y3,c='g')

Out[155]: [<matplotlib.lines.Line2D at 0x262e10b8>]

Chapter 8 MaChine Learning with sCikit-Learn

347

 Conclusions
In this chapter you saw the simplest cases of regression and classification problems

solved using the scikit-learn library. Many concepts of the validation phase for a

predictive model were presented in a practical way through some practical examples.

In the next chapter you will see a complete case in which all steps of data analysis

are discussed by way of a single practical example. Everything will be implemented on

IPython Notebook, an interactive and innovative environment well suited for sharing

every step of the data analysis with the form of an interactive documentation useful as a

report or as a web presentation.

The three regression curves will be represented with three colors. The linear

regression will be blue; the polynomial of second degree that is, a parabola, will be red;

and the polynomial of third degree will be green (see Figure 8-18).

Figure 8-18. The three regression curves produce very different trends starting
from the training set

Chapter 8 MaChine Learning with sCikit-Learn

349
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_9

CHAPTER 9

Deep Learning with
TensorFlow
2017 was a special year for deep learning. In addition to the great experimental results

obtained thanks to the algorithms developed, deep learning has seen its glory in the

release of many frameworks with which to develop numerous projects. Some of you will

certainly already know this branch of machine learning, others you have certainly heard

someone mention it. Given the great importance that deep learning is taking in data

processing and analysis techniques, I found it important to add this new chapter in the

second edition of this book.

In this chapter you can have an introductory overview of the world of deep learning,

and the artificial neural networks on which its techniques are based. Furthermore,

among the new Python frameworks for deep learning, you will use TensorFlow, which is

proving to be an excellent tool for research and development of deep learning analysis

techniques. With this library you will see how to develop different models of neural

networks that are the basis of deep learning.

 Artificial Intelligence, Machine Learning, and Deep
Learning
For anyone dealing with the world of data analysis, these three terms are ultimately very

common on the web, in text, and on seminars related to the subject. But what is the

relationship between them? And what do they really consist of?

In this section you will see the detailed definitions of these three terms. You will

discover how in recent decades, the need to create more and more elaborate algorithms,

and to be able to make predictions and classify data more and more efficiently, has led to

350

machine learning. Then you will discover how, thanks to new technological innovations,

and in particular to the computing power achieved by the GPU, deep learning

techniques have been developed based on neural networks.

 Artificial intelligence
The term artificial intelligence was first used by John McCarthy in 1956, at a time

full of great hopes and enthusiasm for the technology world. They were at the dawn

of electronics and computers as large as whole rooms that could do a few simple

calculations, but they did so efficiently and quickly compared to humans that they

already glimpsed possible future developments of electronic intelligence.

But without going into the world of science fiction, the current definition best suited

to artificial intelligence, often referred to as AI, could be summarized briefly with the

following sentence:

Automatic processing on a computer capable of performing operations that
would seem to be exclusively relevant to human intelligence.

Hence the concept of artificial intelligence is a variable concept that varies with

the progress of the machines themselves and with the concept of “exclusive human

relevance”. While in the 60s and 70s we saw artificial intelligence as the ability of

computers to perform calculations and find mathematical solutions of complex

problems “of exclusive relevance of great scientists,” in the 80s and 90s it matured in

the ability to assess risks, resources, and making decisions. In the year 2000, with the

continuous growth of computer computing potential, the possibility of these systems to

learn with machine learning was added to the definition.

Finally, in the last few years, the concept of artificial intelligence has focused on

visual and auditory recognition operations, which until recently were thought of as

“exclusive human relevance”.

These operations include:

• Image recognition

• Object detection

• Object segmentation

• Language translation

Chapter 9 Deep Learning with tensorFLow

351

• Natural language understanding

• Speech recognition

These are the problems still under study thanks to the deep learning techniques.

 Machine Learning Is a Branch of Artificial Intelligence
In the previous chapter you saw machine learning in detail, with many examples of the

different techniques for classifying or predicting data.

Machine learning (ML), with all its techniques and algorithms, is a large branch of

artificial intelligence. In fact, you refer to it, while remaining within the ambit of artificial

intelligence when you use systems that are able to learn (learning systems) to solve

various problems that shortly before had been “considered exclusive to humans”.

 Deep Learning Is a Branch of Machine Learning
Within the machine learning techniques, a further subclass can be defined, called deep

learning. You saw in Chapter 8 that machine learning uses systems that can learn, and

this can be done through features inside the system (often parameters of a fixed model)

that are modified in response to input data intended for learning (training set).

Deep learning techniques take a step forward. In fact, deep learning systems are

structured so as not to have these intrinsic characteristics in the model, but these

characteristics are extracted and detected by the system automatically as a result of

learning itself. Among these systems that can do this, we refer in particular to artificial

neural networks.

 The Relationship Between Artificial Intelligence, Machine
Learning, and Deep Learning
To sum up, in this section you have seen that machine learning and deep learning are

actually subclasses of artificial intelligence. Figure 9-1 shows a schematization of classes

in this relationship.

Chapter 9 Deep Learning with tensorFLow

352

 Deep Learning
In this section, you will learn about some significant factors that led to the development of

deep learning and read why only in these last years have there been so many steps forward.

 Neural Networks and GPUs
In the previous section, you learned that in the field of artificial intelligence, deep

learning has become popular only in the last few years precisely to solve problems of

visual and auditory recognition.

In the context of deep learning, a lot of calculation techniques and algorithms have

been developed in recent years, making the most of the potential of the Python language.

But the theory behind deep learning actually dates back many years. In fact, the concept

of the neural network was introduced in 1943, and the first theoretical studies on

artificial neural networks and their applications were developed in the 60s.

The fact is that only in recent years the neural networks, with the related deep

learning techniques that use them, have proved useful to solve many problems of

artificial intelligence. This is due to the fact that only now are there technologies that can

be implemented in a useful and efficient way.

Figure 9-1. Schematization of the relationship between artificial intelligence,
machine learning, and deep learning

Chapter 9 Deep Learning with tensorFLow

353

In fact, at the application level, deep learning requires very complex mathematical

operations that require millions or even billions of parameters. The CPUs of the 90s,

even if powerful, were not able to perform these kinds of operations in efficient times.

Even today the calculation with the CPUs, although considerably improved, requires

long processing times. This inefficiency is due to the particular architecture of the CPUs,

which have been designed to efficiently perform mathematical operations that are not

those required by neural networks.

But a new kind of hardware has developed in recent decades, the Graphics Processing

Unit (GPU), thanks to the enormous commercial drive of the videogames market. In

fact this type of processor has been designed to manage more and more efficient vector

calculations, such as multiplications between matrices, which is necessary for 3D reality

simulations and rendering.

Thanks to this technological innovation, many deep learning techniques have

been realized. In fact, to realize the neural networks and their learning, the tensors

(multidimensional matrices) are used, carrying out many mathematical operations. It

is precisely this kind of work that GPUs are able to do more efficiently. Thanks to their

contribution, the processing speed of deep learning is increased by several orders of

magnitude (days instead of months).

 Data Availability: Open Data Source, Internet of Things,
and Big Data
Another very important factor affecting the development of deep learning is the huge

amount of data that can be accessed. In fact, the data are the fundamental ingredient for the

functioning of neural networks, both for the learning phase and for their verification phase.

Thanks to the spread of the Internet all over the world, now everyone can access

and produce data. While a few years ago only a few organizations were providing data

for analysis, today, thanks to the IoT (Internet of Things), many sensors and devices

acquire data and make them available on networks. Not only that, even social networks

and search engines (like Facebook, Google, and so on) can collect huge amounts of data,

analyzing in real time millions of users connected to their services (called Big Data).

So today a lot of data related to the problems we want to solve with the deep learning

techniques, are easily available not only for a fee, but also in free form (open data source).

Chapter 9 Deep Learning with tensorFLow

354

 Python
Another factor that contributed to the great success and diffusion of deep learning

techniques was the Python programming language.

In the past, planning neural network systems was very complex. The only language

able to carry out this task was C ++, a very complex language, difficult to use and known

only to a few specialists. Moreover, in order to work with the GPU (necessary for this type

of calculation), it was necessary to know CUDA (Compute Unified Device Architecture),

the hardware development architecture of NVIDIA graphics cards with all their technical

specifications.

Today, thanks to Python, the programming of neural networks and deep learning

techniques has become high level. In fact, programmers no longer have to think about

the architecture and the technical specifications of the graphics card (GPU), but can

focus exclusively on the part related to deep learning. Moreover the characteristics of the

Python language enable programmers to develop simple and intuitive code. You have

already tried this with machine learning in the previous chapter, and the same applies to

deep learning.

 Deep Learning Python Frameworks
Over the past two years many developer organizations and communities have been

developing Python frameworks that are greatly simplifying the calculation and

application of deep learning techniques. There is a lot of excitement about it, and many

of these libraries perform the same operations almost competitively, but each of them is

based on different internal mechanisms. We will see which in the next few years will be

more successful or not.

Among these frameworks available today for free, it is worth mentioning some that

are gaining some success.

• TensorFlow is an open source library for numerical calculation that

bases its use on data flow graphs. These are graphs where the nodes

represent the mathematical operations and the edges represent

tensors (multidimensional data arrays). Its architecture is very

flexible and can distribute the calculations both on multiple CPUs

and on multiple GPUs.

Chapter 9 Deep Learning with tensorFLow

355

• Caffe2 is a framework developed to provide an easy and simple way

to work on deep learning. It allows you to test model and algorithm

calculations using the power of GPUs in the cloud.

• PyTorch is a scientific framework completely based on the use of

GPUs. It works in a highly efficient way and was recently developed

and is still not well consolidated. It is still proving a powerful tool for

scientific research.

• Theano is the most used Python library in the scientific field for the

development, definition, and evaluation of mathematical expressions

and physical models. Unfortunately, the development team

announced that new versions will no longer be released. However,

it remains a reference framework thanks to the number of programs

developed with this library, both in literature and on the web.

 Artificial Neural Networks
Artificial neural networks are a fundamental element for deep learning and their use

is the basis of many, if not almost all, deep learning techniques. In fact, these systems

are able to learn, thanks to their particular structure that refers to the biological neural

circuits.

In this section, you will see in more detail what artificial neural networks are and

how they are structured.

 How Artificial Neural Networks Are Structured
Artificial neural networks are complex structures created by connecting simple basic

components that are repeated within the structure. Depending on the number of these

basic components and the type of connections, more and more complex networks will be

formed, with different architectures, each of which will present peculiar characteristics

regarding the ability to learn and solve different problems of deep learning.

Figure 9-2 shows an example of how a generic artificial neural network is structured.

Chapter 9 Deep Learning with tensorFLow

356

The basic units are called nodes (the colored circles shown in Figure 9-2), which

in the biological model simulate the functioning of a neuron within a neural network.

These artificial neurons perform very simple operations, similar to the biological

counterparts. They are activated when the total sum of the input signals they receive

exceeds an activation threshold.

These nodes can transmit signals between them by means of connections, called

edges, which simulate the functioning of biological synapses (the blue arrows shown

in Figure 9-2). Through these edges, the signals sent by a neuron pass to the next one,

behaving as a filter. That is, an edge converts the output message from a neuron, into an

inhibitory or excitant signal, decreasing or increasing its intensity, according to

pre- established rules (a different weight is generally applied for each edge).

The neural network has a certain number of nodes used to receive the input signal

from the outside (see Figure 9-2). This first group of nodes is usually represented in a

column at the far left end of the neural network schema. This group of nodes represents

the first layer of the neural network (input layer). Depending on the input signals

received, some (or all) of these neurons will be activated by processing the received

signal and transmitting the result as output to another group of neurons, through edges.

Figure 9-2. A schematization of how a generic artificial neural network is
structured

Chapter 9 Deep Learning with tensorFLow

357

This second group is in an intermediate position in the neural network, and is called

the hidden layer. This is because the neurons of this group do not communicate with

the outside neither in input nor in output and are therefore hidden. As you can see in

Figure 9-2, each of these neurons has lots of incoming edges, often with all the neurons

of the previous layer. Even these hidden neurons will be activated whether the total

incoming signal will exceed a certain threshold. If affirmative, they will process the signal

and transmit it to another group of neurons (in the right direction of the scheme shown

in Figure 9-2). This group can be another hidden layer or the output layer, that is, the last

layer that will send the results directly to the outside.

So in general we will have a flow of data that will enter the neural network (from left

to right), and that will be processed in a more or less complex way depending on the

structure, and will produce an output result.

The behavior, capabilities, and efficiency of a neural network will depend exclusively

on how the nodes are connected and the total number of layers and neurons assigned to

each of them. All these factors define the neural network architecture.

 Single Layer Perceptron (SLP)
The Single Layer Perceptron (SLP) is the simplest model of neural network and was

designed by Frank Rosenblatt in 1958. Its architecture is represented in Figure 9-3.

The Single Layer Perceptron (SLP) structure is very simple; it is a two-layer neural

network, without hidden layers, in which a number of input neurons send signals to an

output neuron through different connections, each with its own weight. Figure 9-4 shows

in more detail the inner workings of this type of neural network.

Figure 9-3. The Single Layer Perceptron (SLP) architecture

Chapter 9 Deep Learning with tensorFLow

358

The edges of this structure are represented in this mathematic model by means of a

weight vector consisting of the local memory of the neuron.

W = (w1, w2,......, wn)

The output neuron receives an input vector signals xi each coming from a different

neuron.

X =(x1, x2,......, xn)

Then it processes the input signals via a weighed sum.

i

n

i
=
å

0

w xi = w1x1 + w2x2 + … + wnxn = s

The total signal s is that perceived by the output neuron. If the signal exceeds the

activation threshold of the neuron, it will activate, sending 1 as a value, otherwise it will

remain inactive, sending -1.

Output =
1 0

1

,

,

if s

otherwise

>
-

ì
í
î

This is the simplest activation function (see function A shown Figure 9-5), but you

can also use other more complex ones, such as the sigmoid (see function D shown in

Figure 9-5).

Figure 9-4. A more detailed Single Layer Perceptron (SLP) representation with the
internal operation expressed mathematically

Chapter 9 Deep Learning with tensorFLow

359

Now that you've seen the structure of the SLP neural network, you can switch to see

how they can learn.

The learning procedure of a neural network, called the learning phase, works

iteratively. That is, a predetermined number of cycles of operation of the neural network

are carried out, in each of which the weights of the wi synapses are slightly modified.

Each learning cycle is called an epoch. In order to carry out the learning you will have to

use appropriate input data, called the training sets (you have already used them in depth

in the Chapter 8).

In the training sets, for each input value, the expected output value is obtained. By

comparing the output values produced by the neural network with the expected ones

you can analyze the differences and modify the weight values, and you can also reduce

them. In practice this is done by minimizing a cost function (loss) that is specific of

the problem of deep learning. In fact the weights of the different connections will be

modified for each epoch in order to minimize the cost (loss).

In conclusion, supervised learning is applied to neural networks.

At the end of the learning phase, you will pass to the evaluation phase, in which

the learned SLP perceptron must analyze another set of inputs (test set) whose results

are also known here. By evaluating the differences between the values obtained and

those expected, the degree of ability of the neural network to solve the problem of deep

learning will be known. Often the percentage of cases guessed with the wrong ones is

used to indicate this value, and it is called accuracy.

Figure 9-5. Some examples of activation functions

Chapter 9 Deep Learning with tensorFLow

360

 Multi Layer Perceptron (MLP)
A more complex and efficient architecture is the Multi Layer Perceptron (MLP). In this

structure, there are one or more hidden layers interposed between the input layer and

the output layer. The architecture is represented in Figure 9-6.

At the end of the learning phase, you will pass to the evaluation phase, in which

the learned SLP perceptron must analyze another set of inputs (test set) whose results

are also known here. By evaluating the differences between the values obtained and

those expected, the degree of ability of the neural network to solve the problem of deep

learning will be known. Often, the percentage of cases guessed with the wrong ones is

used to indicate this value, and it is called accuracy.

Although more complex, the models of MLP neural networks are based primarily on

the same concepts as the models of the SLP neural networks. Even in MLPs, weights are

assigned to each connection. These weights must be minimized based on the evaluation

of a training set, much like the SLPs. Here, too, each node must process all incoming

signals through an activation function, even if this time the presence of several hidden

layers, will make the neural network able to learn more, adapting more effectively to the

type of problem deep learning is trying to solve.

Figure 9-6. The Multi Layer Perceptron (MLP) architecture

Chapter 9 Deep Learning with tensorFLow

361

On the other hand, from a practical point of view, the greater complexity of this

system requires more complex algorithms both for the learning phase and for the

evaluation phase. One of these is the back propagation algorithm, used to effectively

modify the weights of the various connections to minimize the cost function, in order to

quickly and progressively converge the output values with the expected ones.

Other algorithms are used specifically for the minimization phase of the cost (or

error) function and are generally referred to as gradient descent techniques.

The study and detailed analysis of these algorithms is outside the scope of this text,

which has only an introductory function of the argument, with the goal of trying to keep

the topic of deep learning as simple and clear as possible. If you are so inclined, I suggest

you go deeper into the subject both in various books and on the Internet.

 Correspondence Between Artificial and Biological Neural
Networks
So far you have seen how deep learning uses basic structures, called artificial neural

networks, to simulate the functioning of the human brain, particularly in the way it

processes information.

There is also a real correspondence between the two systems at the highest reading

level. In fact, you've just seen that neural networks have structures based on layers of

neurons. The first layer processes the incoming signal, then passes it to the next layer,

which in turn processes it and so on, until it reaches a final result. For each layer of

neurons, incoming information is processed in a certain way, generating different levels

of representation of the same information.

In fact, the whole operation of elaboration of an artificial neural network is nothing

more than the transformation of information to ever more abstract levels.

This functioning is identical to what happens in the cerebral cortex. For example,

when the eye receives an image, the image signal passes through various processing

stages (such as the layers of the neural network), in which, for example, the contours of

the figures are first detected (edge detection), then the geometric shape (form perception),

and then to the recognition of the nature of the object with its name. Therefore, there has

been a transformation at different levels of conceptuality of an incoming information,

passing from an image, to lines, to geometrical figures, to arrive at a word.

Chapter 9 Deep Learning with tensorFLow

362

 TensorFlow
In a previous section of this chapter you saw that there are several frameworks in Python

that allow you to develop projects for deep learning. One of these is TensorFlow. In this

section you learn know in detail about this framework, including how it works and how it

is used to realize neural networks for deep learning.

 TensorFlow: Google’s Framework
TensorFlow (https://www.tensorflow.org) is a library developed by the Google Brain

Team, a group of Machine Learning Intelligence, a research organization headed by

Google.

The purpose of this library is to have an excellent tool in the field of research for

machine learning and deep learning.

The first version of TensorFlow was released by Google in February 2017, and in

a year and a half, many update versions have been released, in which the potential,

stability, and usability of this library are greatly increased. This is mainly thanks to the

large number of users among professionals and researchers who are fully using this

framework. At the present time, TensorFlow is already a consolidated deep learning

framework, rich in documentation, tutorials, and projects available on the Internet.

In addition to the main package, there are many other libraries that have been

released over time, including:

• TensorBoard—A kit that allows the visualization of internal graphs to

TensorFlow (https://github.com/tensorflow/tensorboard).

• TensorFlow Fold—Produces beautiful dynamic calculation charts

(https://github.com/tensorflow/fold)

• TensorFlow Transform—Created and managed input data pipelines

(https://github.com/tensorflow/transform)

 TensorFlow: Data Flow Graph
TensorFlow (https://www.tensorflow.org) is a library developed by the Google Brain

Team, a group of Machine Learning Intelligence, a research organization headed by

Google.

Chapter 9 Deep Learning with tensorFLow

https://www.tensorflow.org
https://github.com/tensorflow/tensorboard
https://github.com/tensorflow/fold
https://github.com/tensorflow/transform
https://unsplash.com/photos/1oke6gf5vKo

363

TensorFlow is based entirely on the structuring and use of graphs and on the flow of

data through it, exploiting them in such a way as to make mathematical calculations.

The graph created internally to the TensorFlow runtime system is called Data Flow

Graph and it is structured in runtime according to the mathematical model that is the

basis of the calculation you want to perform. In fact, Tensor Flow allows you to define

any mathematical model through a series of instructions implemented in the code.

TensorFlow will take care of translating that model into the Data Flow Graph internally.

So when you go to model your deep learning neural network, it will be translated

into a Data Flow Graph. Given the great similarity between the structure of neural

networks and the mathematical representation of graphs, it is easy to understand why

this library is excellent for developing deep learning projects.

But TensorFlow is not limited to deep learning and can be used to represent artificial

neural networks. Many other methods of calculation and analysis can be implemented

with this library, since any physical system can be represented with a mathematical

model. In fact, this library can also be used to implement other machine learning

techniques, and for the study of complex physical systems through the calculation of

partial differentials, etc.

The nodes of the Data Flow Graph represent mathematical operations, while

the edges of the graph represent tensors (multidimensional data arrays). The name

TensorFlow derives from the fact that these tensors represent the flow of data through

graphs, which can be used to model artificial neural networks.

 Start Programming with TensorFlow
Now that you have seen in general what the TensorFlow framework consists of, you can

start working with this library. In this section, you will see how to install this framework,

how to define and use tensors within a model, and how to access the internal Data Flow

Graph through sessions.

 Installing TensorFlow
Before starting work, you need to install this library on your computer.

On Ubuntu Linux (version 16 or more recent) system, you can use pip to install the

package:

pip3 install tensorflow

Chapter 9 Deep Learning with tensorFLow

364

On Windows systems, you can use Anaconda to install the package:

conda install tensorflow

TensorFlow is a fairly recent framework and unfortunately it is not present on some

Linux distributions and in the versions of a few years ago. So in these cases the installation

of TensorFlow must be done manually, following the indications suggested on the official

TensorFlow website (https://www.tensorflow.org/install/install_linux).

For those who have Anaconda (including Linux and OS) as a system for distributing

Python packages on their computers, TensorFlow installation is much simpler.

 Programming with the IPython QtConsole
Once TensorFlow is installed, you can start programming with this library. In the

examples in this chapter, we use IPython, but you can do the same things by opening a

normal Python session (or if you prefer, by using Jupyter Notebook). Via the terminal,

open an IPython session by entering the following command line.

jupyter qtconsole

After opening an IPython session, import the library:

In []: import tensorflow as tf

Note remember that to enter multiple commands on different lines, you must
use Ctrl+enter. to execute the commands, press enter only.

 The Model and Sessions in TensorFlow
Before starting to program it is important to understand the internal operation of

TensorFlow, including how it interprets the commands in Python and how it is executed

internally. TensorFlow works through the concept of model and sessions, which define

the structure of a program with a certain sequence of commands.

At the base of any TensorFlow project there is a model that includes a whole series of

variables to be taken into consideration and that will define the system. Variables can be

defined directly or parameterized through mathematical expressions on constants.

Chapter 9 Deep Learning with tensorFLow

https://www.tensorflow.org/install/install_linux

365

In []: c = tf.constant(2,name='c')

 ...: x = tf.Variable(3,name='x')

 ...: y = tf.Variable(c*x,name='y')

 ...:

But now if you try to see the internal value of y (you expect a value of 6) with the

print() function, you will see that it will give you the object and not the value.

In [3]: print(x)

 ...: print(y)

 ...:

<tf.Variable 'x:0' shape=() dtype=int32_ref>

<tf.Variable 'y:0' shape=() dtype=int32_ref>

In fact, you have defined variables belonging to the TensorFlow Data Flow Graph,

that is a graph with nodes and connections that represent your mathematical model. You

will see later how to access these values via sessions.

As far as the variables directly involved in the calculation of the deep learning

method are concerned, placeholders are used, i.e. those tensors directly involved in the

flow of data and in the processing of each single neuron.

Placeholders allow you to build the graph corresponding to the neural network, and

to create operations inside without absolutely knowing the data to be calculated. In fact,

you can build the structure of the graph (and also the neural network).

In practical cases, given a training set consisting of the value to be analyzed x (a

tensor) and an expected value y (a tensor), you will define two placeholders xey, i.e., two

tensors that will contain the values processed by the data for the whole neural network.

For example, define two placeholders that contain integers with the tf.

placeholder() function.

In []: X = tf.placeholder("int32")

 ...: X = tf.placeholder("int32")

 ...:

Once you have defined all the variables involved, i.e., you have defined the

mathematical model at the base of the system, you need to perform the appropriate

processing and initialize the whole model with the tf.global_variables_

initializer() function.

In []: model = tf.global_variables_initializer()

Chapter 9 Deep Learning with tensorFLow

366

Now that you have a model initialized and loaded into memory, you need to start

doing the calculations, but to do that you need to communicate with the TensorFlow

runtime system. For this purpose a TensorFlow session is created, during which you can

launch a series of commands to interact with the underlying graph corresponding to the

model you have created.

You can create a new session with the tf.Session() constructor.

Within a session, you can perform the calculations and receive the values of the

variables obtained as results, i.e., you can check the status of the graph during processing.

You have already seen that the operation of TensorFlow is based on the creation of

an internal graph structure, in which the nodes are able to perform processing on the

flow of data inside tensors that follow the connections of the graph.

So when you start a session, in practice you do nothing but instantiate this graph.

A session has two main methods:

• session.extend() allows you to make changes to the graph during

the calculation, such as adding new nodes or connections.

• session.run() launches the execution of the graph and allows you to

obtain the results in output.

Since several operations are carried out within the same session, it is preferred to use

the construct with: with all calls to methods inherent to it.

In this simple case, you simply want to see the values of the variables defined in the

model and print them on the terminal.

In []: with tf.Session() as session:

 ...: session.run(model)

 ...: print(session.run(y))

 ...:

6

As you can see within the session, you can access the values of the Data Flow Graph,

including the y variable that you previously defined.

 Tensors
The basic element of the TensorFlow library is the tensor. In fact, the data that follow the

flow within the Data Flow Graph are tensors (see Figure 9-7).

Chapter 9 Deep Learning with tensorFLow

367

A tensor is identified by three parameters:

• rank—Dimension of the tensor (a matrix has rank 2, a vector has

rank 1)

• shape—Number of rows and columns (e.g. (3.3) is a 3x3 matrix)

• type—Type of tensor elements.

type of tensor elements and columns (eg (3.3) is a 3x3 matrix)has rank 2, a

vector has rank 1)s ic

Tensors are nothing more than multidimensional arrays. In previous chapters, you

saw how easy it is to get them thanks to the NumPy library. So you can start by defining

one with this library.

In []: import numpy as np

 ...: t = np.arange(9).reshape((3,3))

Figure 9-7. Some representations of the tensors according to the different
dimensions

Chapter 9 Deep Learning with tensorFLow

368

 ...: print(t)

 ...:

[[0 1 2]

[3 4 5]

[6 7 8]]

Now you can convert this multidimensional array into a TensorFlow tensor very

easily thanks to the tf.convert_to_tensor() function, which takes two parameters. The

first parameter is the array t that you want to convert and the second is the type of data

you want to convert it to, in this case int32.

In []: tensor = tf.convert_to_tensor(t, dtype=tf.int32)

If you want to see the content of the sensor now, you have to create a TensorFlow

session and run it, printing the result on the terminal thanks to the print() function.

In []: with tf.Session() as sess:

 ...: print(sess.run(tensor))

 ...:

[[0 1 2]

[3 4 5]

[6 7 8]]

As you can see, you have a tensor containing the same values and the same

dimensions as the multidimensional array defined with NumPy. This approach is very

useful for calculating deep learning, since many input values are in the form of NumPy

arrays.

But tensors can be built directly from TensorFlow, without using the NumPy library.

There are a number of functions that make it possible to enhance the tensors quickly and

easily.

For example, if you want to initialize a tensor with all the values zero, you can use the

tf.zeros() method.

In [10]: t0 = tf.zeros((3,3),'float64')

In [11]: with tf.Session() as session:

 ...: print(session.run(t0))

 ...:

[[0. 0. 0.]

Chapter 9 Deep Learning with tensorFLow

369

[0. 0. 0.]

[0. 0. 0.]]

Likewise, if you want a tensor with all values of 1, you use the tf.ones() method.

In [12]: t1 = tf.ones((3,3),'float64')

In [13]: with tf.Session() as session:

 ...: print(session.run(t1))

 ...:

[[1. 1. 1.]

[1. 1. 1.]

[1. 1. 1.]]

Finally, it is also possible to create a tensor containing random values, which follow a

uniform distribution (all the values within a range are equally likely to exit), thanks to the

tf.random_uniform() function.

For example, if you want a 3x3 tensor with float values between 0 and 1, you can write:

In []: tensorrand = tf.random_uniform((3, 3), minval=0, maxval=1,

dtype=tf.float32)

In []: with tf.Session() as session:

 ...: print(session.run(tensorrand))

 ...:

[[0.63391674 0.38456023 0.13723993]

[0.7398864 0.44730318 0.95689237]

[0.48043406 0.96536028 0.40439832]]

But it can often be useful to create a tensor containing values that follow a normal

distribution with a choice of mean and standard deviation. You can do this with the tf.

random_normal() function.

For example, if you want to create a tensor of 3x3 size with mean 0 and standard

deviation of 3, you will write:

In []: norm = tf.random_normal((3, 3), mean=0, stddev=3)

In []: with tf.Session() as session:

 ...: print(session.run(norm))

Chapter 9 Deep Learning with tensorFLow

370

 ...:

[[-1.51012492 2.52284908 1.10865617]

[-5.08502769 1.92598009 -4.25456524]

[4.85962772 -6.69154644 5.32387066]]

 Operation on Tensors
Once the tensors have been defined, it will be necessary to carry out operations on them.

Most mathematical calculations on tensors are based on the sum and multiplication

between tensors.

Define two tensors, t1 and t2, that you will use to perform the operations between

tensors.

In []: t1 = tf.random_uniform((3, 3), minval=0, maxval=1, dtype=tf.

float32)

 ...: t2 = tf.random_uniform((3, 3), minval=0, maxval=1, dtype=tf.

float32)

 ...:

In []: with tf.Session() as sess:

 ...: print('t1 = ',sess.run(t1))

 ...: print('t2 = ',sess.run(t2))

 ...:

t1 = [[0.22056699 0.15718663 0.11314452]

[0.43978345 0.27561605 0.41013181]

[0.58318019 0.3019532 0.04094303]]

t2 = [[0.16032183 0.32963789 0.30250323]

[0.02322233 0.79547286 0.01091838]

[0.63182664 0.64371264 0.06646919]]

Now to sum these two tensors, you can use the tf.add() function. To perform

multiplication, you use the tf.matmul() function.

In []: sum = tf.add(t1,t2)

 ...: mul = tf.matmul(t1,t2)

 ...:

Chapter 9 Deep Learning with tensorFLow

371

In []: with tf.Session() as sess:

 ...: print('sum =', sess.run(sum))

 ...: print('mul =', sess.run(mul))

 ...:

sum = [[0.78942883 0.73469722 1.0990597]

[0.42483664 0.62457812 0.98524892]

[1.30883813 0.75967956 0.19211888]]

mul = [[0.26865649 0.43188229 0.98241472]

[0.13723138 0.25498611 0.49761111]

[0.32352239 0.48217845 0.80896515]]

Another very common operation with tensors is the calculation of the determinant.

TensorFlow provides the tf.matrix_determinant() method for this purpose:

In []: det = tf.matrix_determinant(t1)

 ...: with tf.Session() as sess:

 ...: print('det =', sess.run(det))

 ...:

det = 0.101594

With these basic operations, you can implement many mathematical expressions

that use tensors.

 Single Layer Perceptron with TensorFlow
To better understand how to develop neural networks with TensorFlow, you will begin to

implement a single layer Perceptron (SLP) neural network that is as simple as possible.

You will use the tools made available in the TensorFlow library and by using the concepts

you have learned about during the chapter and gradually introducing new ones.

During the course of this section, you will see the general practice of building a

neural network. Thanks to a step-by-step procedure you can become familiar with

the different commands used. Then, in the next section, you will use them to create a

Perceptron Multi Layer neural network.

In both cases you will work with simple but complete examples of each part, so as

not to add too many technical and complex details, but focus on the central part that

involves the implementation of neural networks with TensorFlow.

Chapter 9 Deep Learning with tensorFLow

372

 Before Starting
Before starting, reopen a session with IPython by starting a new kernel. Once the session

is open it imports all the necessary modules:

In []: import numpy as np

 ...: import matplotlib.pyplot as plt

 ...: import tensorflow as tf

 ...:

 Data To Be Analyzed
For the examples that you will consider in this chapter, you will use a series of data that

you used in the machine learning chapter, in particular in the section about the Support

Vector Machines (SVMs) technique.

The set of data that you will study is a set of 11 points distributed in a Cartesian axis

divided into two classes of membership. The first six belong to the first class, the other

five to the second. The coordinates (x, y) of the points are contained within a numpy

inputX array, while the class to which they belong is indicated in inputY. This is a list of

two-element arrays, with an element for each class they belong to. The value 1 in the first

or second element indicates the class to which it belongs.

If the element has value [1.0], it will belong to the first class. If it has value [0,1], it

belongs to the second class. The fact that they are float values is due to the optimization

calculation of deep learning. You will see later that the test results of the neural networks

will be floating numbers, indicating the probability that an element belongs to the first or

second class.

Suppose, for example, that the neural network will give you the result of an element

that will have the following values:

[0.910, 0.090]

This result will mean that the neural network considers that the element under

analysis belongs to 91% to the first class and to 9% to the second class. You will see this

in practice at the end of the section, but it was important to explain the concept to better

understand the purpose of some values.

So based on the values taken from the example of SVMs in the machine learning

chapter, you can define the following values.

Chapter 9 Deep Learning with tensorFLow

373

In [2]: #Training set

 ...: inputX = np.arr

ay([[1.,3.],[1.,2.],[1.,1.5],[1.5,2.],[2.,3.],[2.5,1.5]

,[2.,1.],[3.,1.],[3.,2.],[3.5,1.],[3.5,3.]])

 ...: inputY = [[1.,0.]]*6+ [[0.,1.]]*5

 ...: print(inputX)

 ...: print(inputY)

 ...:

[[1. 3.]

[1. 2.]

[1. 1.5]

[1.5 2.]

[2. 3.]

[2.5 1.5]

[2. 1.]

[3. 1.]

[3. 2.]

[3.5 1.]

[3.5 3.]]

[[1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0],

 [1.0, 0.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]

To better see how these points are arranged spatially and which classes they belong

to, there is no better approach than to plot everything with matplotlib.

In [3]: yc = [0]*6 + [1]*5

 ...: print(yc)

...: import matplotlib.pyplot as plt

 ...: %matplotlib inline

 ...: plt.scatter(inputX[:,0],inputX[:,1],c=yc, s=50, alpha=0.9)

 ...: plt.show()

 ...:

[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

You will get the graph in Figure 9-8 as a result.

Chapter 9 Deep Learning with tensorFLow

374

To help in the graphic representation (as shown in Figure 9-8) of the color

assignment, the inputY array has been replaced with yc array.

As you can see, the two classes are easily identifiable in two opposite regions. The

first region covers the upper-left part, the second region covers the lower-right part. All

this would seem to be simply subdivided by an imaginary diagonal line, but to make the

system more complex, there is an exception with the point number 6 that is internal to

the other points.

It will be interesting to see how and if the neural networks that we implement will be

able to correctly assign the class to points of this kind.

 The SLP Model Definition
For the examples that you will consider in this chapter, you will use a series of data that

you have already used in the machine learning chapter, in particular in the section about

the Support Vector Machines (SVMs) technique.

If you want to do a deep learning analysis, the first thing to do is define the neural

network model you want to implement. So you will already have in mind the structure to

be implemented, how many neurons and layers and compounds (in this case only one),

the weight of the connections, and the cost function to be applied.

Figure 9-8. The training set is a set of Cartesian points divided into two classes of
membership (yellow and dark blue)

Chapter 9 Deep Learning with tensorFLow

375

Following the TensorFlow practice, you can start by defining a series of parameters

necessary to characterize the execution of the calculations during the learning phase. The

learning rate is a parameter that regulates the learning speed of each neuron. This parameter

is very important and plays a very important role in regulating the efficiency of a neural

network during the learning phase. Establishing the optimal a priori value of the learning

rate is impossible, because it depends very much on the structure of the neural network and

on the particular type of data to be analyzed. It is therefore necessary to adjust this value

through different learning tests, choosing the value that guarantees the best accuracy.

You can start with a generic value of 0.01, assigning this value to the learning_rate

parameter.

In []: learning_rate = 0.01

Another parameter to be defined is training_epochs. This defines how many

epochs (learning cycles) will be applied to the neural network for the learning phase.

In []: training_epochs = 2000

During program execution, it will be necessary in some way to monitor the progress

of learning and this can be done by printing values on the terminal. You can decide how

many epochs you will have to display a printout with the results, and insert them into the

display_step parameter. A reasonable value is every 50 or 100 steps.

In []: display_step = 50

To make the implemented code reusable, it is necessary to add parameters that

specify the number of elements that make up the training set, and how many batches

must be divided. In this case you have a small training set of only 11 items. So you can

use them all in one batch.

In []: n_samples = 11

 ...: batch_size = 11

 ...: total_batch = int(n_samples/batch_size)

 ...:

Finally, you can add two more parameters that describe the size and number of

classes to which the incoming data belongs.

In []: n_input = 2 # size data input (# size of each element of x)

 ...: n_classes = 2 # n of classes

 ...:

Chapter 9 Deep Learning with tensorFLow

376

Now that you have defined the parameters of the method, let's move on to building

the neural network. First, define the inputs and outputs of the neural network through

the use of placeholders.

In []: # tf Graph input

 ...: x = tf.placeholder("float", [None, n_input])

 ...: y = tf.placeholder("float", [None, n_classes])

 ...:

Then you have just implicitly defined an SLP neural network with two neurons in

the input layer and two neurons in the output layer (see Figure 9-9), defining an input

placeholder x with two values and a placeholder of output y with two values. Explicitly,

you have instead defined two tensors, the tensor x that will contain the values of the

input coordinates, and a tensor y that will contain the probabilities of belonging to the

two classes of each element.

But this will be much more visible in the following example, when dealing with

MLP neural networks. Now that you have defined the placeholders, occupied with the

weights and the bias, which, as you saw, are used to define the connections of the neural

network. These tensors W and b are defined as variables by the constructor Variable()

and initialized to all zero values with tf.zeros().

In []: # Set model weights

 ...: W = tf.Variable(tf.zeros([n_input, n_classes]))

 ...: b = tf.Variable(tf.zeros([n_classes]))

 ...:

Figure 9-9. The Single Layer Perceptron model used in this example

Chapter 9 Deep Learning with tensorFLow

377

The variables weight and bias you have just defined will be used to define the

evidence x * W + b, which characterizes the neural network in mathematical form. The

tf.matmul() function performs a multiplication between tensors x * W, while the tf.

add() function adds to the result the value of bias b.

In []: evidence = tf.add(tf.matmul(x, W), b)

From the value of the evidence, you can directly calculate the probabilities of the

output values with the tf.nn.softmax() function.

In []: y_ = tf.nn.softmax(evidence)

The tf.nn.softmax() function performs two steps:

• It calculates the evidence that a certain Cartesian entry point xi

belongs to a particular class.

• It converts the evidence into probability of belonging to each of the

two possible classes and returns it as y_.

Continuing with the construction of the model, now you must think about

establishing the rules for the minimization of these parameters and you do so by

defining the cost (or loss). In this phase you can choose many functions; one of the most

common is the mean squared error loss.

In []: cost = tf.reduce_sum(tf.pow(y-y_,2))/ (2 * n_samples)

But you can use any other function that you think is more convenient. Once the

cost (or loss) function has been defined, an algorithm must be established to perform

the minimization at each learning cycle (optimization). You can use the tf.train.

GradientDescentOptimizer() function as an optimizer that bases its operation on the

Gradient Descent algorithm.

In []: optimizer =tf.train.GradientDescentOptimizer(learning_

rate=learning_rate).minimize(cost)

With the definition of the cost optimization method (minimization), you have

completed the definition of the neural network model. Now you are ready to begin to

implement its learning phase.

Chapter 9 Deep Learning with tensorFLow

378

 Learning Phase
Before starting, define two lists that will serve as a container for the results obtained

during the learning phase. In avg_set you will enter all the cost values for each epoch

(learning cycle), while in epoch_set you will enter the relative epoch number. These

data will be useful at the end to visualize the cost trend during the learning phase of the

neural network, which will be very useful for understanding the efficiency of the chosen

learning method for the neural network.

In []: avg_set = []

 ...: epoch_set=[]

 ...:

Then before starting the session, you need to initialize all the variables with the

function you've seen before, tf.global_variables_initializer().

In []: init = tf.global_variables_initializer()

Now you are ready to start the session (do not press Enter at the end; you must enter

other commands within the session).

In []: with tf.Session() as sess:

 ...: sess.run(init)

 ...:

You have already seen that every learning step is called an epoch. It is possible to

intervene within each epoch, thanks to a for loop that scans all the values of training_

epochs.

Within this cycle for each epoch, you will optimize using the sess.run (optimizer)

command. Furthermore, every 50 epochs, the condition if% display_step == 0 will

be satisfied. Then you will extract the cost value via sess.run(cost) and insert it in the

c variable that you will use for printing on the terminal as the print() argument that

stores the avg_set list, using the append() function. In the end, when the for loop has

been completed, you will print a message on the terminal informing you of the end of

the learning phase. (Do not press Enter, as you still have to add other commands ...)

In []: with tf.Session() as sess:

 ...: sess.run(init)

 ...:

 ...: for i in range(training_epochs):

Chapter 9 Deep Learning with tensorFLow

379

 ...: sess.run(optimizer, feed_dict = {x: inputX, y: inputY})

 ...: if i % display_step == 0:

 ...: c = sess.run(cost, feed_dict = {x: inputX, y: inputY})

 ...: print("Epoch:", '%04d' % (i), "cost=", "{:.9f}".

format(c))

 ...: avg_set.append(c)

 ...: epoch_set.append(i + 1)

 ...:

 ...: print("Training phase finished")

Now that the learning phase is over, it is useful to print a summary table on the

terminal that shows you the trend of the cost during it. You can do this thanks to the values

contained in the avg_set and epoch_set lists that you filled during the learning process.

Always in the session add these last lines of code, at the end of which you can finally

press Enter and start the session by executing the learning phase.

In []: with tf.Session() as sess:

 ...: sess.run(init)

 ...:

 ...: for i in range(training_epochs):

 ...: sess.run(optimizer, feed_dict = {x: inputX, y: inputY})

 ...: if i % display_step == 0:

 ...: c = sess.run(cost, feed_dict = {x: inputX, y: inputY})

 ...: print("Epoch:", '%04d' % (i), "cost=", "{:.9f}".

format(c))

 ...: avg_set.append(c)

 ...: epoch_set.append(i + 1)

 ...:

 ...: print("Training phase finished")

 ...:

 ...: training_cost = sess.run(cost, feed_dict = {x: inputX, y:

inputY})

 ...: print("Training cost =", training_cost, "\nW=", sess.run(W),

"\nb=", sess.run(b))

 ...: last_result = sess.run(y_, feed_dict = {x:inputX})

 ...: print("Last result =",last_result)

 ...:

Chapter 9 Deep Learning with tensorFLow

380

When the session with the learning phase of the neural network is finished, you get

the following results.

Epoch: 0000 cost= 0.249360308

Epoch: 0050 cost= 0.221041128

Epoch: 0100 cost= 0.198898271

Epoch: 0150 cost= 0.181669712

Epoch: 0200 cost= 0.168204829

Epoch: 0250 cost= 0.157555178

Epoch: 0300 cost= 0.149002746

Epoch: 0350 cost= 0.142023861

Epoch: 0400 cost= 0.136240512

Epoch: 0450 cost= 0.131378993

Epoch: 0500 cost= 0.127239138

Epoch: 0550 cost= 0.123672642

Epoch: 0600 cost= 0.120568059

Epoch: 0650 cost= 0.117840447

Epoch: 0700 cost= 0.115424201

Epoch: 0750 cost= 0.113267884

Epoch: 0800 cost= 0.111330733

Epoch: 0850 cost= 0.109580085

Epoch: 0900 cost= 0.107989430

Epoch: 0950 cost= 0.106537104

Epoch: 1000 cost= 0.105205171

Epoch: 1050 cost= 0.103978693

Epoch: 1100 cost= 0.102845162

Epoch: 1150 cost= 0.101793952

Epoch: 1200 cost= 0.100816071

Epoch: 1250 cost= 0.099903718

Epoch: 1300 cost= 0.099050261

Epoch: 1350 cost= 0.098249927

Epoch: 1400 cost= 0.097497642

Epoch: 1450 cost= 0.096789025

Epoch: 1500 cost= 0.096120209

Epoch: 1550 cost= 0.095487759

Epoch: 1600 cost= 0.094888613

Chapter 9 Deep Learning with tensorFLow

381

Epoch: 1650 cost= 0.094320126

Epoch: 1700 cost= 0.093779817

Epoch: 1750 cost= 0.093265578

Epoch: 1800 cost= 0.092775457

Epoch: 1850 cost= 0.092307687

Epoch: 1900 cost= 0.091860712

Epoch: 1950 cost= 0.091433071

Training phase finished

Training cost = 0.0910315

W= [[-0.70927787 0.70927781]

[0.62999243 -0.62999237]]

b= [0.34513065 -0.34513068]

Last result = [[0.95485419 0.04514586]

[0.85713255 0.14286745]

[0.76163834 0.23836163]

[0.74694741 0.25305259]

[0.83659446 0.16340555]

[0.27564839 0.72435158]

[0.29175714 0.70824283]

[0.090675 0.909325]

[0.26010245 0.73989749]

[0.04676624 0.95323378]

[0.37878013 0.62121987]]

As you can see, the cost is gradually improving during the epoch, up to a value of

0.168. Then it is interesting to see the values of the W weights and the bias of the neural

network. These values represent the parameters of the model, i.e., the neural network

instructed to analyze this type of data and to carry out this type of classification.

These parameters are very important, because once they are obtained and knowing

the structure of the neural network used, it will be possible to reuse them anywhere

without repeating the learning phase. Do not consider this example that takes only

a minute to do the calculation; in real cases it may take days to do it, and often you

have to make many attempts and adjust and calibrate the different parameters before

developing an efficient neural network that is very accurate at class recognition, or at

performing any other task.

Chapter 9 Deep Learning with tensorFLow

382

If you see the results from a graphical point of view, it may be easier and faster to

understand. You can use the matplotlib to do this.

In []: plt.plot(epoch_set,avg_set,'o',label = 'SLP Training phase')

 ...: plt.ylabel('cost')

 ...: plt.xlabel('epochs')

 ...: plt.legend()

 ...: plt.show()

 ...:

You can analyze the learning phase of the neural network by following the trend of

the cost value, as shown in Figure 9-10.

Now you can move on to see the results of the classification during the last step of the

learning phase.

In []: yc = last_result[:,1]

 ...: plt.scatter(inputX[:,0],inputX[:,1],c=yc, s=50, alpha=1)

 ...: plt.show()

 ...:

Figure 9-10. The cost value decreases during the learning phase (cost
optimization)

Chapter 9 Deep Learning with tensorFLow

383

You will get the representation of the points in the Cartesian plane, as shown in

Figure 9-11.

The graph represents the points in the Cartesian plane (see Figure 9-11), with a

color ranging from blue (belonging to 100% to the first group) to yellow (belonging to

100% to the second group). As you can see, the division in the two classes of the points

of the training set is quite optimal, with an uncertainty for the four points on the central

diagonal (green).

This chart shows in some way the learning ability of the neural network used. As you

can see, despite the learning epochs with the training set used, the neural network failed

to learn that point 6 (x = 2.5, y = 1.5) belongs to the first class. This is a result you could

expect, as it represents an exception and adds an effect of uncertainty to other points in

the second class (the green dots).

 Test Phase and Accuracy Calculation
Now that you have an educated neural network, you can create the evaluations and

calculate the accuracy.

First you define a testing set with elements different than the training set. For

convenience, these examples always use 11 elements.

Figure 9-11. The estimate of the class to which the points belong in the last epoch
of the learning phase

Chapter 9 Deep Learning with tensorFLow

384

In []: #Testing set

 ...: testX = np.arr

ay([[1.,2.25],[1.25,3.],[2,2.5],[2.25,2.75],[2.5,3.],

[2.,0.9],[2.5,1.2],[3.,1.25],[3.,1.5],[3.5,2.],[3.5,2.5]])

 ...: testY = [[1.,0.]]*5 + [[0.,1.]]*6

 ...: print(testX)

 ...: print(testY)

 ...:

[[1. 2.25]

[1.25 3.]

[2. 2.5]

[2.25 2.75]

[2.5 3.]

[2. 0.9]

[2.5 1.2]

[3. 1.25]

[3. 1.5]

[3.5 2.]

[3.5 2.5]]

[[1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0], [1.0, 0.0],

[0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]

To better understand the test set data and their membership classes, show the points

on a chart using matplotlib.

In []: yc = [0]*5 + [1]*6

 ...: print(yc)

 ...: plt.scatter(testX[:,0],testX[:,1],c=yc, s=50, alpha=0.9)

 ...: plt.show()

 ...:

[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]

You will get the representation of the points in the Cartesian plane, as shown in

Figure 9-12.

Chapter 9 Deep Learning with tensorFLow

385

Now you will use this testing set to evaluate the SLP neural network and calculate the

accuracy.

In []: init = tf.global_variables_initializer()

 ...: with tf.Session() as sess:

 ...: sess.run(init)

 ...:

 ...: for i in range(training_epochs):

 ...: sess.run(optimizer, feed_dict = {x: inputX, y: inputY})

 ...:

 ...: pred = tf.nn.softmax(evidence)

 ...: result = sess.run(pred, feed_dict = {x: testX})

 ...: correct_prediction = tf.equal(tf.argmax(pred, 1),

tf.argmax(testY, 1))

 ...:

 ...: # Calculate accuracy

 ...: accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

 ...: print("Accuracy:", accuracy.eval({x: testX, y: testY}))

 ...:

Accuracy: 1.0

Figure 9-12. The testing set

Chapter 9 Deep Learning with tensorFLow

386

Apparently, the neural network was able to correctly classify all 11 past champions.

It displays the points on the Cartesian plane with the same system of color gradations

ranging from dark blue to yellow.

In []: yc = result[:,1]

 ...: plt.scatter(testX[:,0],testX[:,1],c=yc, s=50, alpha=1)

 ...: plt.show()

You will get the representation of the points in the Cartesian plane, as shown in

Figure 9-13.

The results can be considered optimal, given the simplicity of the model used and

the small amount of data used in the training set. Now you will face the same problem

with a more complex neural network, the Perceptron Multi Layer.

 Multi Layer Perceptron (with One Hidden Layer)
with TensorFlow
In this section, you will deal with the same problem as in the previous section, but using

an MLP (Multi Layer Perceptron) neural network.

Figure 9-13. The estimate of the class to which the testing set points belong

Chapter 9 Deep Learning with tensorFLow

387

Start a new IPython session, resetting the kernel. As for the first part of the code, it

remains the same as the previous example.

In [1]: import tensorflow as tf

 ...: import numpy as np

 ...: import matplotlib.pyplot as plt

 ...:

 ...: #Training set

 ...: inputX = np.arr

ay([[1.,3.],[1.,2.],[1.,1.5],[1.5,2.],[2.,3.],[2.5,1.5],

[2.,1.],[3.,1.],[3.,2.],[3.5,1.],[3.5,3.]])

 ...: inputY = [[1.,0.]]*6+ [[0.,1.]]*5

 ...:

 ...: learning_rate = 0.001

 ...: training_epochs = 2000

 ...: display_step = 50

 ...: n_samples = 11

 ...: batch_size = 11

 ...: total_batch = int(n_samples/batch_size)

 The MLP Model Definition
As you saw earlier in the chapter, a neural network MLP differs from a SLP neural

network in that it can have one or more hidden layers.

Therefore, you will write parameterized code that allows you to work in the most

general way possible, establishing at the time of definition the number of hidden layers

present in the neural network and how many neurons they are composed of.

Define two new parameters that define the number of neurons present for each

hidden layer. The n_hidden_1 parameter will indicate how many neurons are present in

the first hidden layer, while n_hidden_2 will indicate how many neurons are present in

the second hidden layer.

To start with a simple case, you will start with an MLP neural network with only one

hidden layer consisting of only two neurons. Let's comment on the part related to the

second hidden layer.

As for the n_input and n_classes parameters, they will have the same values as the

previous example with the SLP neural network.

Chapter 9 Deep Learning with tensorFLow

388

In [2]: # Network Parameters

 ...: n_hidden_1 = 2 # 1st layer number of neurons

 ...: #n_hidden_2 = 0 # 2nd layer number of neurons

 ...: n_input = 2 # size data input

 ...: n_classes = 2 # classes

 ...:

The definition of the placeholders is also the same as the previous example.

In [3]: # tf Graph input

 ...: X = tf.placeholder("float", [None, n_input])

 ...: Y = tf.placeholder("float", [None, n_classes])

 ...:

Now you have to deal with the definition of the various W and bias b weights for the

different connections. The neural network is now much more complex, having several

layers to take into account. An efficient way to parameterize them is to define them as

follows, commenting out the weight and bias parameters for the second hidden layer

(only for the MLP with one hidden layer as this example).

In [4]: # Store layers weight & bias

 ...: weights = {

 ...: 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),

 ...: #'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),

 ...: 'out': tf.Variable(tf.random_normal([n_hidden_1, n_classes]))

 ...: }

 ...: biases = {

 ...: 'b1': tf.Variable(tf.random_normal([n_hidden_1])),

 ...: #'b2': tf.Variable(tf.random_normal([n_hidden_2])),

 ...: 'out': tf.Variable(tf.random_normal([n_classes]))

 ...: }

 ...:

To create a neural network model that takes into account all the parameters you've

specified dynamically, you need to define a convenient function, which you'll call

multilayer_perceptron().

Chapter 9 Deep Learning with tensorFLow

389

In [5]: # Create model

 ...: def multilayer_perceptron(x):

 ...: layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])

 ...: #layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])

 ...: # Output fully connected layer with a neuron for each class

 ...: out_layer = tf.matmul(layer_1, weights['out']) + biases['out']

 ...: return out_layer

 ...:

Now you can build the model by calling up the function you just defined.

In [6]: # Construct model

 ...: evidence = multilayer_perceptron(X)

 ...: y_ = tf.nn.softmax(evidence)

 ...:

The next step is to define the cost function and choose an optimization method. For

MLP neural networks, a good choice is tf.train.AdamOptimizer() as an optimization

method.

In [7]: # Define cost and optimizer

 ...: cost = tf.reduce_sum(tf.pow(Y-y_,2))/ (2 * n_samples)

 ...: optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).

minimize(cost)

 ...:

With these last two lines you have completed the definition of the model of the MLP

neural network. Now you can move on to creating a session to implement the learning

phase.

 Learning Phase
As in the previous example, you will now define two lists that will contain the number

of epochs and the measured cost values for each of them. You will also initialize all the

variables before starting the session.

Chapter 9 Deep Learning with tensorFLow

390

In [8]: avg_set = []

 ...: epoch_set = []

 ...: init = tf.global_variables_initializer()

 ...:

Now you are ready to start implementing the learning session. Open the session with

the following instructions (remember not to press Enter, but Enter+Ctrl to insert other

commands later):

In [9]: with tf.Session() as sess:

 ...: sess.run(init)

 ...:

Now it implements the code to execute for each epoch, and inside it a scan for each

batch belonging to the training set. In this case you have a training set consisting of a

single batch, so you will have only one iteration in which you will directly assign inputX

and inputY to batch_x and batch_y. In other cases you will need to implement a function,

such as next_batch(batch_size), which subdivides the entire training set (for example,

inputdata) into different batches, progressively returning them as a return value.

At each batch cycle the cost function will be minimized with sess.run([optimizer,

cost]), which will correspond to a partial cost. All batches will contribute to the

calculation of the average cost of all the avg_cost batches. However, in this case, since

you have only one batch, the avg_cost is equivalent to the cost of the entire training set.

In [9]: with tf.Session() as sess:

 ...: sess.run(init)

 ...:

 ...: for epoch in range(training_epochs):

 ...: avg_cost = 0.

 ...: # Loop over all batches

 ...: for i in range(total_batch):

 ...: #batch_x, batch_y = inputdata.next_batch(batch_size)

TO BE IMPLEMENTED

 ...: batch_x = inputX

 ...: batch_y = inputY

 ...: _, c = sess.run([optimizer, cost], feed_dict={X:

batch_x, Y: batch_y})

Chapter 9 Deep Learning with tensorFLow

391

 ...: # Compute average loss

 ...: avg_cost += c / total_batch

Every certain number of epochs, you will certainly want to display the value of the

current cost on the terminal and add these values to the avg_set and epoch_set lists, as

in the previous example with SLP.

In [9]: with tf.Session() as sess:

 ...: sess.run(init)

 ...:

 ...: for epoch in range(training_epochs):

 ...: avg_cost = 0.

 ...: # Loop over all batches

 ...: for i in range(total_batch):

 ...: #batch_x, batch_y = inputdata.next_batch(batch_size)

TO BE IMPLEMENTED

 ...: batch_x = inputX

 ...: batch_y = inputY

 ...: _, c = sess.run([optimizer, cost], feed_dict={X:

batch_x, Y: batch_y})

 ...: # Compute average loss

 ...: avg_cost += c / total_batch

 ...: if epoch % display_step == 0:

 ...: print("Epoch:", '%04d' % (epoch+1), "cost={:.9f}".

format(avg_cost))

 ...: avg_set.append(avg_cost)

 ...: epoch_set.append(epoch + 1)

 ...:

 ...: print("Training phase finished")

Before running the session, add a few lines of instructions to view the results of the

learning phase.

In [9]: with tf.Session() as sess:

 ...: sess.run(init)

 ...:

 ...: for epoch in range(training_epochs):

 ...: avg_cost = 0.

Chapter 9 Deep Learning with tensorFLow

392

 ...: # Loop over all batches

 ...: for i in range(total_batch):

 ...: #batch_x, batch_y = inputdata.next

 _batch(batch_size) TO BE IMPLEMENTED

 ...: batch_x = inputX

 ...: batch_y = inputY

 ...: _, c = sess.run([optimizer, cost], feed

 _dict={X: batch_x, Y: batch_y})

 ...: # Compute average loss

 ...: avg_cost += c / total_batch

 ...: if epoch % display_step == 0:

 ...: print("Epoch:", '%04d' % (epoch+1), "cost={:.9f}".

format(avg_cost))

 ...: avg_set.append(avg_cost)

 ...: epoch_set.append(epoch + 1)

 ...:

 ...: print("Training phase finished")

 ...: last_result = sess.run(y_, feed_dict = {X: inputX})

 ...: training_cost = sess.run(cost, feed_dict = {X:

 inputX, Y: inputY})

 ...: print("Training cost =", training_cost)

 ...: print("Last result =", last_result)

 ...:

Finally, you can execute the session and obtain the following results of the learning

phase.

Epoch: 0001 cost=0.454545379

Epoch: 0051 cost=0.454544961

Epoch: 0101 cost=0.454536706

Epoch: 0151 cost=0.454053283

Epoch: 0201 cost=0.391623020

Epoch: 0251 cost=0.197094142

Epoch: 0301 cost=0.145846367

Epoch: 0351 cost=0.121205062

Epoch: 0401 cost=0.106998600

Epoch: 0451 cost=0.097896501

Chapter 9 Deep Learning with tensorFLow

393

Epoch: 0501 cost=0.091660112

Epoch: 0551 cost=0.087186322

Epoch: 0601 cost=0.083868250

Epoch: 0651 cost=0.081344165

Epoch: 0701 cost=0.079385243

Epoch: 0751 cost=0.077839941

Epoch: 0801 cost=0.076604150

Epoch: 0851 cost=0.075604357

Epoch: 0901 cost=0.074787453

Epoch: 0951 cost=0.074113965

Epoch: 1001 cost=0.073554687

Epoch: 1051 cost=0.073086999

Epoch: 1101 cost=0.072693743

Epoch: 1151 cost=0.072361387

Epoch: 1201 cost=0.072079219

Epoch: 1251 cost=0.071838818

Epoch: 1301 cost=0.071633331

Epoch: 1351 cost=0.071457185

Epoch: 1401 cost=0.071305975

Epoch: 1451 cost=0.071175829

Epoch: 1501 cost=0.071063705

Epoch: 1551 cost=0.070967078

Epoch: 1601 cost=0.070883729

Epoch: 1651 cost=0.070811756

Epoch: 1701 cost=0.070749618

Epoch: 1751 cost=0.070696011

Epoch: 1801 cost=0.070649780

Epoch: 1851 cost=0.070609920

Epoch: 1901 cost=0.070575655

Epoch: 1951 cost=0.070546091

Training phase finished

Training cost = 0.0705207

Last result = [[0.994959 0.00504093]

[0.97760069 0.02239927]

[0.95353836 0.04646158]

[0.91986829 0.0801317]

Chapter 9 Deep Learning with tensorFLow

394

[0.93176246 0.06823757]

[0.27190316 0.7280969]

[0.40035316 0.59964687]

[0.04414944 0.9558506]

[0.17278962 0.82721037]

[0.01200284 0.98799717]

[0.19901533 0.80098462]]

Now you can view the data collected in the avg_set and epoch_set lists to analyze

the progress of the learning phase.

In [10]: plt.plot(epoch_set,avg_set,'o',label = 'MLP Training phase')

 ...: plt.ylabel('cost')

 ...: plt.xlabel('epochs')

 ...: plt.legend()

 ...: plt.show()

 ...:

You can analyze the learning phase of the neural network by following the trend of

the cost value, as shown in Figure 9-14.

Figure 9-14. The cost value decreases during the learning phase (cost
optimization)

Chapter 9 Deep Learning with tensorFLow

395

In Figure 9-14, you can see that during the learning epochs there is a huge initial

improvement as far as the cost optimization is concerned, then in the final part, the

epoch improvements become smaller and then converge to zero.

From the analysis of the graph, however, it can be ascertained that the learning cycle

of the neural network has been completed in the assigned epoch cycles. So you can

consider the neural network as learned. Now you can move on to the evaluation phase.

 Test Phase and Accuracy Calculation
Now that you have an educated neural network, you can make the evaluation text and

calculate the accuracy.

Now that you have a neural network instructed to perform the assignment, you can

move on to the evaluation phase. Then you will calculate the accuracy of the model you

generated.

To test this MLP neural network model, you will use the same testing set used in the

SLP neural network example.

In [11]: #Testing set

 ...: testX = np.arr

ay([[1.,2.25],[1.25,3.],[2,2.5],[2.25,2.75],[2.5,3.],

[2.,0.9],[2.5,1.2],[3.,1.25],[3.,1.5],[3.5,2.],[3.5,2.5]])

 ...: testY = [[1.,0.]]*5 + [[0.,1.]]*6

 ...:

It is not necessary now to view this testing set since you already did so in the previous

section (you can check it if necessary).

Launch the session with the training test and evaluate the correctness of the results

obtained by calculating the accuracy.

In [12]: with tf.Session() as sess:

 ...: sess.run(init)

 ...:

 ...: for epoch in range(training_epochs):

 ...: for i in range(total_batch):

 ...: batch_x = inputX

 ...: batch_y = inputY

 ...: _, c = sess.run([optimizer, cost],

Chapter 9 Deep Learning with tensorFLow

396

 feed_dict={X: batch_x, Y: batch_y})

 ...:

 ...: # Test model

 ...: pred = tf.nn.softmax(evidence)

 ...: result = sess.run(pred, feed_dict = {X: testX})

 ...: correct_prediction = tf.equal(tf.argmax(pred, 1),

 tf.argmax(Y, 1))

 ...:

 ...: # Calculate accuracy

 ...: accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

 ...: print("Accuracy:", accuracy.eval({X: testX, Y: testY}))

 ...: print(result)

By running the entire session, you will get the following result.

Accuracy: 1.0

Result = [[0.98507893 0.0149211]

[0.99064976 0.00935023]

[0.86788082 0.13211915]

[0.83086801 0.16913196]

[0.78604239 0.21395761]

[0.36329603 0.63670397]

[0.19036612 0.80963391]

[0.06203776 0.93796223]

[0.0883315 0.91166848]

[0.05140254 0.94859749]

[0.10417036 0.89582968]]

Also in the case of the MLP neural network you have obtained 100% accuracy

(11 points correctly classified on 11 points total). Now show the classification obtained

by drawing points on the Cartesian plane.

In [13]: yc = result[:,1]

 ...: print(yc)

 ...: plt.scatter(testX[:,0],testX[:,1],c=yc, s=50, alpha=1)

 ...: plt.show()

 ...:

Chapter 9 Deep Learning with tensorFLow

397

[0.0149211 0.00935023 0.13211915 0.16913196 0.21395761 0.63670397

0.80963391 0.93796223 0.91166848 0.94859749 0.89582968]

You will get a chart (see Figure 9-15) of the points distributed on the Cartesian plane

with the color going from blue to yellow, which indicates the probability of belonging to

one of the two classes.

 Multi Layer Perceptron (with Two Hidden Layers)
with TensorFlow
In this section, you will extend the previous structure by adding two neurons to the first

hidden layer and adding a second hidden layer with two neurons.

Start a new session of IPython and rewrite the code of the previous example, which

remained the same except for some parameters (you see them in the code text).

Thanks to the parameterization of the code you used, it is very easy to extend and

modify the structure of the MLP neural network. In this case you only have to change the

following parameters and re-run it all over again.

In [1]: import tensorflow as tf

 ...: import numpy as np

 ...: import matplotlib.pyplot as plt

 ...:

Figure 9-15. The estimate of the class to which the testing set points belong

Chapter 9 Deep Learning with tensorFLow

398

 ...: #Training set

 ...: inputX = np.arr

ay([[1.,3.],[1.,2.],[1.,1.5],[1.5,2.],[2.,3.],[2.5,1.5],

[2.,1.],[3.,1.],[3.,2.],[3.5,1.],[3.5,3.]])

 ...: inputY = [[1.,0.]]*6+ [[0.,1.]]*5

 ...:

 ...: learning_rate = 0.001

 ...: training_epochs = 2000

 ...: display_step = 50

 ...: n_samples = 11

 ...: batch_size = 11

 ...: total_batch = int(n_samples/batch_size)

 ...:

 ...: # Network Parameters

 ...: n_hidden_1 = 4 # 1st layer number of neurons

 ...: n_hidden_2 = 2 # 2nd layer number of neurons

 ...: n_input = 2 # size data input

 ...: n_classes = 2 # classes

 ...:

 ...: # tf Graph input

 ...: X = tf.placeholder("float", [None, n_input])

 ...: Y = tf.placeholder("float", [None, n_classes])

 ...:

 ...: # Store layers weight & bias

 ...: weights = {

 ...: 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),

 ...: 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),

 ...: 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))

 ...: }

 ...: biases = {

 ...: 'b1': tf.Variable(tf.random_normal([n_hidden_1])),

 ...: 'b2': tf.Variable(tf.random_normal([n_hidden_2])),

 ...: 'out': tf.Variable(tf.random_normal([n_classes]))

 ...: }

 ...:

 ...: # Create model

Chapter 9 Deep Learning with tensorFLow

399

 ...: def multilayer_perceptron(x):

 ...: layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])

 ...: layer_2 = tf.add(tf.matmul(layer_1, weights['h2']),

biases['b2'])

 ...: # Output fully connected layer with a neuron for each class

 ...: out_layer = tf.add(tf.matmul(layer_2, weights['out']),

biases['out'])

 ...: return out_layer

 ...:

 ...: # Construct model

 ...: evidence = multilayer_perceptron(X)

 ...: y_ = tf.nn.softmax(evidence)

 ...:

 ...: # Define cost and optimizer

 ...: cost = tf.reduce_sum(tf.pow(Y-y_,2))/ (2 * n_samples)

 ...: optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).

minimize(cost)

 ...:

 ...: avg_set = []

 ...: epoch_set = []

 ...: init = tf.global_variables_initializer()

 ...:

 ...: with tf.Session() as sess:

 ...: sess.run(init)

 ...:

 ...: for epoch in range(training_epochs):

 ...: avg_cost = 0.

 ...: # Loop over all batches

 ...: for i in range(total_batch):

 ...: #batch_x, batch_y = inputdata.next_batch(batch_size)

TO BE IMPLEMENTED

 ...: batch_x = inputX

 ...: batch_y = inputY

 ...: _, c = sess.run([optimizer, cost],

 feed_dict={X: batch_x, Y: batch_y})

 ...: # Compute average loss

Chapter 9 Deep Learning with tensorFLow

400

 ...: avg_cost += c / total_batch

 ...: if epoch % display_step == 0:

 ...: print("Epoch:", '%04d' % (epoch+1), "cost={:.9f}".

format(avg_cost))

 ...: avg_set.append(avg_cost)

 ...: epoch_set.append(epoch + 1)

 ...:

 ...: print("Training phase finished")

 ...: last_result = sess.run(y_, feed_dict = {X: inputX})

 ...: training_cost = sess.run(cost, feed_dict = {X: inputX, Y:

inputY})

 ...: print("Training cost =", training_cost)

 ...: print("Last result =", last_result)

 ...:

By running the session, the following results are obtained.

Epoch: 0001 cost=0.545502067

Epoch: 0051 cost=0.545424163

Epoch: 0101 cost=0.545238674

Epoch: 0151 cost=0.540347397

Epoch: 0201 cost=0.439834774

Epoch: 0251 cost=0.137688771

Epoch: 0301 cost=0.093460977

Epoch: 0351 cost=0.082653232

Epoch: 0401 cost=0.077882372

Epoch: 0451 cost=0.075265951

Epoch: 0501 cost=0.073665120

Epoch: 0551 cost=0.072624505

Epoch: 0601 cost=0.071925417

Epoch: 0651 cost=0.071447782

Epoch: 0701 cost=0.071118690

Epoch: 0751 cost=0.070890851

Epoch: 0801 cost=0.070732787

Epoch: 0851 cost=0.070622921

Epoch: 0901 cost=0.070546582

Chapter 9 Deep Learning with tensorFLow

401

Epoch: 0951 cost=0.070493549

Epoch: 1001 cost=0.070456795

Epoch: 1051 cost=0.070431381

Epoch: 1101 cost=0.070413873

Epoch: 1151 cost=0.070401885

Epoch: 1201 cost=0.070393734

Epoch: 1251 cost=0.070388250

Epoch: 1301 cost=0.070384577

Epoch: 1351 cost=0.070382126

Epoch: 1401 cost=0.070380524

Epoch: 1451 cost=0.070379473

Epoch: 1501 cost=0.070378840

Epoch: 1551 cost=0.070378408

Epoch: 1601 cost=0.070378155

Epoch: 1651 cost=0.070378013

Epoch: 1701 cost=0.070377886

Epoch: 1751 cost=0.070377827

Epoch: 1801 cost=0.070377797

Epoch: 1851 cost=0.070377767

Epoch: 1901 cost=0.070377775

Epoch: 1951 cost=0.070377789

Training phase finished

Training cost = 0.0703778

Last result = [[0.99683338 0.00316658]

[0.98408335 0.01591668]

[0.96478891 0.0352111]

[0.93620235 0.06379762]

[0.94662082 0.05337923]

[0.26812935 0.73187065]

[0.40619871 0.59380126]

[0.03710628 0.96289372]

[0.16402677 0.83597326]

[0.0090636 0.99093646]

[0.19166829 0.80833173]]

View the progress of the learning phase in the usual way.

Chapter 9 Deep Learning with tensorFLow

402

In [2]: plt.plot(epoch_set,avg_set,'o',label = 'MLP Training phase')

 ...: plt.ylabel('cost')

 ...: plt.xlabel('epochs')

 ...: plt.legend()

 ...: plt.show()

 ...:

You can analyze the learning phase of the neural network by following the trend of

the cost value, as shown in Figure 9-16.

From what you can see in Figure 9-16, learning in this case is much faster than the

previous case (at 1,000 epochs, you would be fine). The optimized cost is almost the same

as in the previous neural network (0.0703778 versus 0.0705207 in the previous case).

 Test Phase and Accuracy Calculation
Here you will also use the same testing set to evaluate the accuracy of the MLP neural

network to classify the samples in analysis.

In [3]: #Testing set

 ...: testX = np.array([[1.,2.25],[1.25,3.],[2,2.5],[2.25,2.75],[2.5,3.],

Figure 9-16. The trend of the cost during the learning phase for a MLP with two
hidden layers

Chapter 9 Deep Learning with tensorFLow

403

[2.,0.9],[2.5,1.2],[3.,1.25],[3.,1.5],[3.5,2.],[3.5,2.5]])

 ...: testY = [[1.,0.]]*5 + [[0.,1.]]*6

 ...:

In [4]: with tf.Session() as sess:

 ...: sess.run(init)

 ...:

 ...: for epoch in range(training_epochs):

 ...: for i in range(total_batch):

 ...: batch_x = inputX

 ...: batch_y = inputY

 ...: _, c = sess.run([optimizer, cost],

 feed_dict={X: batch_x, Y: batch_y})

 ...:

 ...: # Test model

 ...: pred = tf.nn.softmax(evidence) # Apply softmax to logits

 ...: result = sess.run(pred, feed_dict = {X: testX})

 ...: correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(Y, 1))

 ...: # Calculate accuracy

 ...: accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

 ...: print("Accuracy:", accuracy.eval({X: testX, Y: testY}))

 ...: print("Result = ", result)

By executing the session, you will get the following result.

Accuracy: 1.0

Result = [[0.98924851 0.01075149]

[0.99344641 0.00655352]

[0.88655776 0.11344216]

[0.85117978 0.14882027]

[0.8071683 0.19283174]

[0.36805421 0.63194579]

[0.18399802 0.81600195]

[0.05498539 0.9450146]

[0.08029026 0.91970974]

[0.04467025 0.95532972]

[0.09523712 0.90476292]]

Chapter 9 Deep Learning with tensorFLow

404

Here, too, you have 100% accuracy, and with matplotlib showing the test set points

on the Cartesian plane with the usual color gradient system, you will get very similar

results to the previous examples (see Figure 9-17).

In [5]: yc = result[:,1]

 ...: plt.scatter(testX[:,0],testX[:,1],c=yc, s=50, alpha=1)

 ...: plt.show()

 ...:

 Evaluation of Experimental Data
Now you will do something you have not done so far. So far, you have created new

models of neural networks and taken care of the learning phase so that you can learn

how to classify the particular type of data you chose.

Of the data you used for the training set and the test set, you knew perfectly the

expected values (contained in y). In this case, the value corresponded to the class to

which it belongs. So you applied supervised learning.

Finally, with the testing phase and the calculation of the accuracy, you evaluated the

validity of the model of neural network.

Figure 9-17. The estimate of the class to which the testing set points belong

Chapter 9 Deep Learning with tensorFLow

405

Now let’s move on to the proper classification, passing to the neural network a

very large amount of data (points on the Cartesian plane) without knowing what class

they belong to. It is in fact the moment that the neural network informs you about the

possible classes.

To this end, the program simulates experimental data, creating points on the

Cartesian plane that are completely random. For example, generate an array containing

1,000 random points.

In []: test = 3*np.random.random((1000,2))

Then submit these points to the neural network to determine the class of membership.

In [7]: with tf.Session() as sess:

 ...: sess.run(init)

 ...:

 ...: for epoch in range(training_epochs):

 ...: for i in range(total_batch):

 ...: batch_x = inputX

 ...: batch_y = inputY

 ...: _, c = sess.run([optimizer, cost],

 feed_dict={X: batch_x, Y: batch_y})

 ...:

 ...: # Test model

 ...: pred = tf.nn.softmax(evidence)

 ...: result = sess.run(pred, feed_dict = {X: test})

 ...:

Finally you can visualize the experimental data based on their probability of

classification, evaluated by the neural network.

In [8]: yc = result[:,1]

 ...: plt.scatter(test[:,0],test[:,1],c=yc, s=50, alpha=1)

 ...: plt.show()

 ...:

You will get a chart, as shown in Figure 9-18.

Chapter 9 Deep Learning with tensorFLow

406

As you can see according to the shades, two areas of classification are delimited on

the plane, with the parts around the green indicating the zones of uncertainty.

The classification results can be made more comprehensible and clearer by deciding

to establish based on the probability if the point belongs to one or the other class. If the

probability of a point belonging to a class is greater than 0.5 then it will belong to it.

In [9]: yc = np.round(result[:,1])

 ...: plt.scatter(test[:,0],test[:,1],c=yc, s=50, alpha=1)

 ...: plt.show()

 ...:

You will get a chart, as shown in Figure 9-19.

Figure 9-18. A chart with all the experimental points and the estimate of the
classes to which they belong

Chapter 9 Deep Learning with tensorFLow

407

In the chart shown in Figure 9-19, you can clearly see the two regions of the

Cartesian plane that characterize the two classes of belonging.

 Conclusions
In this chapter, you learned about the branch of machine learning that uses neural

networks as a computing structure, called deep learning. You read an overview of the

basic concepts of deep learning, which involves neural networks and their structure.

Finally, thanks to the TensorFlow library, you implemented different types of neural

networks, such as Perceptron Single Layer and Perceptron Multi Layer.

Deep learning, with all its techniques and algorithms, is a very complex subject, and

it is practically impossible to treat it properly in one chapter. However, you now have

become familiar with deep learning and can begin implementing more complex neural

networks.

Figure 9-19. The points delimit the two regions corresponding to the two
belonging classes

Chapter 9 Deep Learning with tensorFLow

409
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_10

CHAPTER 10

An Example—
Meteorological Data
One type of data that’s easier to find on the net is meteorological data. Many sites

provide historical data on many meteorological parameters such as pressure,

temperature, humidity, rain, etc. You only need to specify the location and the date to

get a file with datasets of measurements collected by weather stations. These data are a

source of a wide range of information. As you read in the first chapter of this book, the

purpose of data analysis is to transform the raw data into information and then convert it

into knowledge.

In this chapter, you will see a simple example of how to use meteorological data. This

example will be useful to get a general idea of how to apply many of the techniques seen

in the previous chapters.

 A Hypothesis to Be Tested: The Influence
of the Proximity of the Sea
At the time of writing of this chapter, I find myself at the beginning of summer and

temperatures rising. On the weekend, many inland people travel to mountain villages or

cities close to the sea, in order to enjoy a little refreshment and get away from the sultry

weather of the inland cities. This has always made me wonder what effect the proximity

of the sea has on the climate.

This simple question can be a good starting point for data analysis. I don’t want to

pass this chapter off as something scientific; it’s just a way for someone passionate about

data analysis to put knowledge into practice in order to answer this question—what

influence, if any, does the proximity of the sea have on local climate?

410

 The System in the Study: The Adriatic Sea and
the Po Valley
Now that the problem has been defined, it is necessary to look for a system that is well

suited to the study of the data and to provide a setting suitable for this question.

First you need a sea. Well, I’m in Italy and I have many seas to choose from, since

Italy is a peninsula surrounded by seas. Why limit myself to Italy? Well, the problem

involves a behavior typical of the Italians, that is, they take refuge in places close to the

sea during the summer to avoid the heat of the hinterland. Not knowing if this behavior

is the same for people of other nations, I will only consider Italy as a system of study.

But what areas of Italy might we consider studying? Can we assess the effects

of the sea at various distances? This creates a lot of problems. In fact, Italy is rich in

mountainous areas and doesn’t have a lot territory that uniformly extends for many

kilometers inland. So, to assess the effects of the sea, I exclude the mountains, as they

may introduce many other factors that also affect climate, such as altitude, for example.

A part of Italy that is well suited to this assessment is the Po Valley. This plain starts

from the Adriatic Sea and spreads inland for hundreds of kilometers (see Figure 10-1). It

is surrounded by mountains, but the width of the valley mitigates any mountain effects.

It also has many towns and so it will be easy to choose a set of cities increasingly distant

from the sea, to cover a distance of almost 400 km in this evaluation.

Chapter 10 an example— meteorologiCal Data

411

Figure 10-1. An image of the Po Valley and the Adriatic Sea (Google Maps)

Chapter 10 an example— meteorologiCal Data

412

The first step is to choose a set of 10 cities that will serve as reference standards.

These cities are selected in order to cover the entire range of the plain (see Figure 10-2).

Figure 10-2. The 10 cities chosen as sample (there is another one used as a
reference for take distances from the sea)

In Figure 10-2 you can see the 10 cities that were chosen to analyze weather data: five

cities within the first 100 km and the other five distributed in the remaining 300 km.

Here are the chosen cities:

• Ferrara

• Torino

• Mantova

• Milano

• Ravenna

• Asti

• Bologna

• Piacenza

• Cesena

• Faenza

Chapter 10 an example— meteorologiCal Data

413

Now we have to determine the distances of these cities from the sea. You can follow

many procedures to obtain these values. In this case, you can use the service provided by

the site TheTimeNow (http://www.thetimenow.com/distance-calculator.php), which

is available in many languages (see Figure 10-3).

Figure 10-3. The TheTimeNow website allows you to calculate distances between
two cities

Table 10-1. The Distances from the Sea of the 10 Cities

City Distance (km) Note

ravenna 8 measured with google earth

Cesena 14 measured with google earth

Faenza 37 Distance Faenza-ravenna+8 km

Ferrara 47 Distance Ferrara-Comacchio

Bologna 71 Distance Bologna-Comacchio

mantova 121 Distance mantova-Comacchio

piacenza 200 Distance piacenza-Comacchio

milano 250 Distance milano-Comacchio

asti 315 Distance asti-Comacchio

torino 357 Distance torino-Comacchio

Thanks to this service, it is possible to calculate the approximate distances of the

cities from the sea. You can do this by selecting a city on the coast as the destination.

For many of them you can choose the city of Comacchio as a reference to calculate the

distance from the sea (see Figure 10-2). Once you have determined the distances from

the 10 cities, you will get the values shown in Table 10-1.

Chapter 10 an example— meteorologiCal Data

http://www.thetimenow.com/distance-calculator.php

414

 Finding the Data Source
Once the system under study has been defined, you need to establish a data source from

which to obtain the needed data. By browsing the Internet, you can discover many sites

that provide meteorological data measured from various locations around the world.

One such site is Open Weather Map, available at http://openweathermap.org/

(see Figure 10-4).

Figure 10-4. The OpenWeatherMap site

After you've signed up for an account and received an app ID code, this site enables

you to capture data by specifying the city through a request via URL.

http://api.openweathermap.org/data/2.5/weather?q=Atlanta,US&appid=5807ad2a4

5eb6bf4e81d137dafe74e15

This request will return a JSON file containing all the information about the

current weather situation in the city in question (see Figure 10-5). This JSON file will be

submitted for data analysis using the Python pandas library.

Chapter 10 an example— meteorologiCal Data

http://openweathermap.org/
http://api.openweathermap.org/data/2.5/history/city?q=Atlanta,US
http://api.openweathermap.org/data/2.5/history/city?q=Atlanta,US

415

 Data Analysis on Jupyter Notebook
This chapter will address data analysis using Jupyter Notebook. This will allow you to

enter and study portions of code gradually.

To start the Jupyter Notebook application, launch the following command from the

command line:

jupyter notebook

After the service has started, create a new Notebook.

Let’s start by importing the necessary libraries:

import numpy as np

import pandas as pd

import datetime

The first step is to study the structure of the data received from the site through a

specific request.

Choose a city from those chosen for our study, for example Ferrara, and make a

request for its current meteorological data, using the URL specified. Without a browser,

you can get the text content of a page by using the request.get() text function. Since the

content obtained is in JSON format we can directly read the text received following this

format with the json.load() function.

import json

import requests

ferrara = json.loads(requests.get('http://api.openweathermap.org/data/2.5/

weather?q=Ferrara,IT&appid=5807ad2a45eb6bf4e81d137dafe74e15').text)

Figure 10-5. The JSON file containing the meteorological data on the city
requested

Chapter 10 an example— meteorologiCal Data

416

Now you can see the contents of the JSON file with the meteorological data relating

to the city of Ferrara.

ferrara

{'base': 'stations',

 'clouds': {'all': 40},

 'cod': 200,

 'coord': {'lat': 44.84, 'lon': 11.62},

 'dt': 1525960500,

 'id': 3177090,

 'main': {'humidity': 64,

 'pressure': 1010,

 'temp': 296.58,

 'temp_max': 297.15,

 'temp_min': 296.15},

 'name': 'Ferrara',

 'sys': {'country': 'IT',

 'id': 5816,

 'message': 0.0051,

 'sunrise': 1525924226,

 'sunset': 1525977007,

 'type': 1},

 'visibility': 10000,

 'weather': [{'description': 'scattered clouds',

 'icon': '03d',

 'id': 802,

 'main': 'Clouds'}],

 'wind': {'deg': 240, 'speed': 3.1}}

When you want to analyze the structure of a JSON file, a useful command can be the

following:

list(ferrara.keys())

['coord',

 'weather',

 'base',

Chapter 10 an example— meteorologiCal Data

417

 'main',

 'visibility',

 'wind',

 'clouds',

 'dt',

 'sys',

 'id',

 'name',

 'cod']

This way, you can have a list of all the keys that make up the internal structure of the

JSON. Once you know the name of these keys, you can easily access internal data.

print('Coordinates = ', ferrara['coord'])

print('Weather = ', ferrara['weather'])

print('base = ', ferrara['base'])

print('main = ', ferrara['main'])

print('visibility = ', ferrara['visibility'])

print('wind = ', ferrara['wind'])

print('clouds = ', ferrara['clouds'])

print('dt = ', ferrara['dt'])

print('sys = ', ferrara['sys'])

print('id = ', ferrara['id'])

print('name = ', ferrara['name'])

print('cod = ', ferrara['cod'])

Coordinates = {'lon': 11.62, 'lat': 44.84}

Weather = [{'id': 802, 'main': 'Clouds', 'description': 'scattered

clouds', 'icon': '03d'}]

base = stations

main = {'temp': 296.59, 'pressure': 1010, 'humidity': 64, 'temp_min':

296.15, 'temp_max': 297.15}

visibility = 10000

wind = {'speed': 3.1, 'deg': 240}

clouds = {'all': 40}

dt = 1525960500

Chapter 10 an example— meteorologiCal Data

418

sys = {'type': 1, 'id': 5816, 'message': 0.0029, 'country': 'IT',

'sunrise': 1525924227, 'sunset': 1525977006}

id = 3177090

name = Ferrara

cod = 200

Now you will choose the values that you consider most interesting or useful for this

type of analysis. For example, an important value is temperature:

ferrara['main']['temp']

296.58

The purpose of this analysis of the initial structure is to identify the data that could be

most important in the JSON structure. These data must be processed for analysis. That

is, the data must be extracted from the structure, cleaned or modified according to our

needs, and ordered within a dataframe. This way, you can then apply all the data analysis

techniques presented in this book.

A convenient way to avoid repeating the same code is to insert some extraction

procedures into a function, such as the following.

def prepare(city,city_name):

 temp = []

 humidity = []

 pressure = []

 description = []

 dt = []

 wind_speed = []

 wind_deg = []

 temp.append(city['main']['temp']-273.15)

 humidity.append(city['main']['humidity'])

 pressure.append(city['main']['pressure'])

 description.append(city['weather'][0]['description'])

 dt.append(city['dt'])

 wind_speed.append(city['wind']['speed'])

 wind_deg.append(city['wind']['deg'])

 headings = ['temp','humidity','pressure','description','dt','wind_

speed','wind_deg']

Chapter 10 an example— meteorologiCal Data

419

 data = [temp,humidity,pressure,description,dt,wind_speed,wind_deg]

 df = pd.DataFrame(data,index=headings)

 city = df.T

 city['city'] = city_name

 city['day'] = city['dt'].apply(datetime.datetime.fromtimestamp)

 return city

This function does nothing more than take the meteorological data you are

interested in from the JSON structure, and once cleaned or modified (for example dates

and times), that data are collected in a row of a dataframe (as shown in Figure 10-6).

t1 = prepare(ferrara,'ferrara')

t1

Figure 10-6. The dataframe obtained with the data processed from JSON extraction

Among all the parameters described in the JSON structure within the list column,

here are the ones most appropriate for the study.

• Temperature

• Humidity

• Pressure

• Description

• Wind speed

• Wind degree

All these properties will be related to the time of acquisition expressed from the dt

column, which contains a timestamp as type of data. This value is difficult to read, so you

will convert it into a datetime format that allows you to express the date and time in a

manner more familiar to you. The new column will be called day.

city['day'] = city['dt'].apply(datetime.datetime.fromtimestamp)

Chapter 10 an example— meteorologiCal Data

420

Temperature is expressed in degrees Kelvin, so you will need to convert these values

to Celsius by subtracting 273.15 from each value.

Finally, you add the name of the city passed as a second argument to the prepare()

function.

Data collection is performed at regular intervals to collect data during different times

of the day. For example, you could use a program that executes these requests every

hour. Each acquisition will have a row of the dataframe structure that will be added to

a general dataframe related to the city, called for example, df_ferrara (as shown in

Figure 10-7).

df_ferrara = t1

t2 = prepare(ferrara,'ferrara')

df_ferrara = df_ferrara.append(t2)

df_ferrara

Figure 10-7. The dataframe structure corresponding to a city

It often happens that some data useful for our analysis may not be present in the

JSON source. In this case, you have to resort to other data sources and import the

missing data into the structure. Within this example of analysis, the distances of cities

from the sea are indispensable.

.

df_ravenna['dist'] = 8

df_cesena['dist'] = 14

df_faenza['dist'] = 37

df_ferrara['dist'] = 47

df_bologna['dist'] = 71

df_mantova['dist'] = 121

df_piacenza['dist'] = 200

df_milano['dist'] = 250

df_asti['dist'] = 315

df_torino['dist'] = 357

.

Chapter 10 an example— meteorologiCal Data

421

 Analysis of Processed Meteorological Data
For practical purposes, I have already collected data from all the cities involved in the

analysis. I have already processed and collected them in a dataframe, which I have saved

as a CSV file.

If you want to refer to the data used in this chapter you have to load the 10 CSV files

that I saved at the time of writing. These files contain data already processed to be used

for this analysis.

df_ferrara=pd.read_csv('ferrara_270615.csv')

df_milano=pd.read_csv('milano_270615.csv')

df_mantova=pd.read_csv('mantova_270615.csv')

df_ravenna=pd.read_csv('ravenna_270615.csv')

df_torino=pd.read_csv('torino_270615.csv')

df_asti=pd.read_csv('asti_270615.csv')

df_bologna=pd.read_csv('bologna_270615.csv')

df_piacenza=pd.read_csv('piacenza_270615.csv')

df_cesena=pd.read_csv('cesena_270615.csv')

df_faenza=pd.read_csv('faenza_270615.csv')

Thanks to the read_csv() function of pandas, you can convert CSV files to the

dataframe in just one step.

Once you have uploaded data for each city as a dataframe, you can easily see the

content.

df_cesena

As you can see in Figure 10-8, Jupyter Notebook makes it much easier to read

dataframes with the generation of graphical tables. Furthermore, you can see that each

row shows the measured values for each hour of the day, covering a timeline of about 20

hours in the past.

Chapter 10 an example— meteorologiCal Data

422

In the case shown in Figure 10-8, note that there are only 19 rows. In fact, observing

other cities, it is possible that the meteorological measurement systems sometimes failed

during the measuring process, leaving holes during the acquisition. However, if the data

collected are 19, as in this case, they are sufficient to describe the trend of meteorological

properties during the day. However, it is good practice to check the size of all 10

dataframes. If a city provides insufficient data to describe the daily trend, you will need

to replace it with another city.

There is an easy way to check the size, without having to put one table after another.

Thanks to the shape() function you can determine the number of data acquired (lines)

for each city.

print(df_ferrara.shape)

print(df_milano.shape)

print(df_mantova.shape)

print(df_ravenna.shape)

print(df_torino.shape)

print(df_asti.shape)

Figure 10-8. The dataframe structure corresponding to a city

Chapter 10 an example— meteorologiCal Data

423

print(df_bologna.shape)

print(df_piacenza.shape)

print(df_cesena.shape)

print(df_faenza.shape)

This will give the following result:

(20, 9)

(18, 9)

(20, 9)

(18, 9)

(20, 9)

(20, 9)

(20, 9)

(20, 9)

(20, 9)

(19, 9)

As you can see, the choice of 10 cities has proved to be optimal, since the control

units have provided enough data to continue in the data analysis.

A normal way to approach the analysis of the data you have just collected is to use

data visualization. You saw that the matplotlib library includes a set of tools to generate

charts on which to display data. In fact, data visualization helps you a lot during data

analysis to discover some features of the system you are studying.

Then you activate the necessary libraries:

%matplotlib inline

import matplotlib.pyplot as plt

import matplotlib.dates as mdates

For example, a simple way to choose is to analyze the trend of the temperature

during the day. Consider the city of Milan.

y1 = df_milano['temp']

x1 = df_milano['day']

fig, ax = plt.subplots()

plt.xticks(rotation=70)

Chapter 10 an example— meteorologiCal Data

424

hours = mdates.DateFormatter('%H:%M')

ax.xaxis.set_major_formatter(hours)

ax.plot(x1,y1,'r')

Executing this code, you will get the graph shown in Figure 10-9. As you can see, the

temperature trend follows a nearly sinusoidal pattern characterized by a temperature

that rises in the morning, to reach the maximum value during the heat of the afternoon

(between 2:00 and 6:00 pm). Then the temperature decreases to a minimum value

corresponding to just before dawn, that is, at 6:00 am.

Figure 10-9. Temperature trend of Milan during the day

Since the purpose of your analysis is to try to interpret whether, it is possible to assess

how and if the sea influences this trend. This time, you evaluate the trends of different

cities simultaneously. This is the only way to see if the analysis is going in the right

direction. Thus, choose the three cities closest to the sea and the three cities farthest

from it.

y1 = df_ravenna['temp']

x1 = df_ravenna['day']

y2 = df_faenza['temp']

x2 = df_faenza['day']

Chapter 10 an example— meteorologiCal Data

425

y3 = df_cesena['temp']

x3 = df_cesena['day']

y4 = df_milano['temp']

x4 = df_milano['day']

y5 = df_asti['temp']

x5 = df_asti['day']

y6 = df_torino['temp']

x6 = df_torino['day']

fig, ax = plt.subplots()

plt.xticks(rotation=70)

hours = mdates.DateFormatter('%H:%M')

ax.xaxis.set_major_formatter(hours)

plt.plot(x1,y1,'r',x2,y2,'r',x3,y3,'r')

plt.plot(x4,y4,'g',x5,y5,'g',x6,y6,'g')

This code will produce the chart shown in Figure 10-10. The temperature of the three

cities closest to the sea is shown in red, while the temperature of the three cities farthest

away is in green.

Figure 10-10. The trend of the temperatures of six different cities (red is the closest
to the sea; green is the farthest)

Chapter 10 an example— meteorologiCal Data

426

Looking at Figure 10-10, the results seem promising. In fact, the three closest cities

have maximum temperatures much lower than those farthest away, whereas there seems

to be little difference in the minimum temperatures.

In order to go deep into this aspect, you can collect the maximum and minimum

temperatures of all 10 cities and display a line chart that charts these temperatures

compared to the distance from the sea.

dist = [df_ravenna['dist'][0],

 df_cesena['dist'][0],

 df_faenza['dist'][0],

 df_ferrara['dist'][0],

 df_bologna['dist'][0],

 df_mantova['dist'][0],

 df_piacenza['dist'][0],

 df_milano['dist'][0],

 df_asti['dist'][0],

 df_torino['dist'][0]

]

temp_max = [df_ravenna['temp'].max(),

 df_cesena['temp'].max(),

 df_faenza['temp'].max(),

 df_ferrara['temp'].max(),

 df_bologna['temp'].max(),

 df_mantova['temp'].max(),

 df_piacenza['temp'].max(),

 df_milano['temp'].max(),

 df_asti['temp'].max(),

 df_torino['temp'].max()

]

temp_min = [df_ravenna['temp'].min(),

 df_cesena['temp'].min(),

 df_faenza['temp'].min(),

 df_ferrara['temp'].min(),

 df_bologna['temp'].min(),

 df_mantova['temp'].min(),

 df_piacenza['temp'].min(),

Chapter 10 an example— meteorologiCal Data

427

 df_milano['temp'].min(),

 df_asti['temp'].min(),

 df_torino['temp'].min()

]

Start by representing the maximum temperatures.

plt.plot(dist,temp_max,'ro')

The result is shown in Figure 10-11.

Figure 10-11. Trend of maximum temperature in relation to distance from
the sea

Chapter 10 an example— meteorologiCal Data

428

As shown in Figure 10-11, you can affirm that the hypothesis that the presence of the

sea somehow influences meteorological parameters is true (at least in the day today ☺).

Furthermore, you can see that the effect of the sea decreases rapidly, and after about

60-70 km, the maximum temperatures reach a plateau.

An interesting thing would be to represent the two different trends with two straight

lines obtained by linear regression. To do this, you can use the SVR method provided by

the scikit-learn library.

x = np.array(dist)

y = np.array(temp_max)

x1 = x[x<100]

x1 = x1.reshape((x1.size,1))

y1 = y[x<100]

x2 = x[x>50]

x2 = x2.reshape((x2.size,1))

y2 = y[x>50]

from sklearn.svm import SVR

svr_lin1 = SVR(kernel='linear', C=1e3)

svr_lin2 = SVR(kernel='linear', C=1e3)

svr_lin1.fit(x1, y1)

svr_lin2.fit(x2, y2)

xp1 = np.arange(10,100,10).reshape((9,1))

xp2 = np.arange(50,400,50).reshape((7,1))

yp1 = svr_lin1.predict(xp1)

yp2 = svr_lin2.predict(xp2)

plt.plot(xp1, yp1, c='r', label='Strong sea effect')

plt.plot(xp2, yp2, c='b', label='Light sea effect')

plt.axis((0,400,27,32))

plt.scatter(x, y, c='k', label='data')

Chapter 10 an example— meteorologiCal Data

429

This code will produce the chart shown in Figure 10-12.

As you can see, temperature increase in the first 60 km is very rapid, rising from 28 to

31 degrees. It then increases very mildly (if at all) over longer distances. The two trends

are described by two straight lines that have the following expression

x = ax + b

where a is the slope and the b is the intercept.

print(svr_lin1.coef_)

print(svr_lin1.intercept_)

print(svr_lin2.coef_)

print(svr_lin2.intercept_)

[[-0.04794118]]

[27.65617647]

[[-0.00317797]]

[30.2854661]

Figure 10-12. The two trends described by the maximum temperatures in relation
to distance

Chapter 10 an example— meteorologiCal Data

430

You might consider the intersection point of the two lines as the point between the

area where the sea exerts its influence and the area where it doesn’t, or at least not as

strongly.

from scipy.optimize import fsolve

def line1(x):

 a1 = svr_lin1.coef_[0][0]

 b1 = svr_lin1.intercept_[0]

 return a1*x + b1

def line2(x):

 a2 = svr_lin2.coef_[0][0]

 b2 = svr_lin2.intercept_[0]

 return a2*x + b2

def findIntersection(fun1,fun2,x0):

 return fsolve(lambda x : fun1(x) - fun2(x),x0)

result = findIntersection(line1,line2,0.0)

print("[x,y] = [%d , %d]" % (result,line1(result)))

x = np.linspace(0,300,31)

plt.plot(x,line1(x),x,line2(x),result,line1(result),'ro')

Executing the code, you can find the point of intersection as follows:

[x,y] = [58, 30]

Chapter 10 an example— meteorologiCal Data

431

This point is represented in the chart shown in Figure 10-13.

So you can say that the average distance in which the effects of the sea vanish is

58 km.

Now you can analyze the minimum temperatures.

plt.axis((0,400,15,25))

plt.plot(dist,temp_min,'bo')

Figure 10-13. The point of intersection between two straight lines obtained by
linear regression

Chapter 10 an example— meteorologiCal Data

432

Doing this, you’ll obtain the chart shown in Figure 10-14.

In this case it appears very clear that the sea has no effect on minimum temperatures

recorded during the night, or rather, around six in the morning. If I remember well,

when I was a child I was taught that the sea mitigated the cold temperatures, or that the

sea released the heat absorbed during the day. This does not seem to be the case. This

case tracks summer in Italy; it would be interesting to see if this hypothesis is true in the

winter or somewhere else.

Another meteorological measure contained in the 10 dataframes is the humidity.

Even for this measure, you can see the trend of the humidity during the day for the three

cities closest to the sea and for the three farthest away.

y1 = df_ravenna['humidity']

x1 = df_ravenna['day']

y2 = df_faenza['humidity']

x2 = df_faenza['day']

y3 = df_cesena['humidity']

x3 = df_cesena['day']

y4 = df_milano['humidity']

x4 = df_milano['day']

Figure 10-14. The minimum temperatures appear to be independent of the
distance from the sea

Chapter 10 an example— meteorologiCal Data

433

y5 = df_asti['humidity']

x5 = df_asti['day']

y6 = df_torino['humidity']

x6 = df_torino['day']

fig, ax = plt.subplots()

plt.xticks(rotation=70)

hours = mdates.DateFormatter('%H:%M')

ax.xaxis.set_major_formatter(hours)

plt.plot(x1,y1,'r',x2,y2,'r',x3,y3,'r')

plt.plot(x4,y4,'g',x5,y5,'g',x6,y6,'g')

This code will create the chart shown in Figure 10-15.

At first glance, it would seem that the cities closest to the sea experience more

humidity than those farthest away and that this difference in moisture (about 20%)

extends throughout the day. Let’s see if this remains true when we report the maximum

and minimum humidity with respect to the distances from the sea.

Figure 10-15. The trend of the humidity during the day for three cities nearest the
sea (shown in red) and three cities farthest away (indicated in green)

Chapter 10 an example— meteorologiCal Data

434

hum_max = [df_ravenna['humidity'].max(),

 df_cesena['humidity'].max(),

 df_faenza['humidity'].max(),

 df_ferrara['humidity'].max(),

 df_bologna['humidity'].max(),

 df_mantova['humidity'].max(),

 df_piacenza['humidity'].max(),

 df_milano['humidity'].max(),

 df_asti['humidity'].max(),

 df_torino['humidity'].max()

]

plt.plot(dist,hum_max,'bo')

The maximum humidity of 10 cities according to their distance from the sea are

represented in the chart in Figure 10-16.

Figure 10-16. The trend of the maximum humidity function with respect to the
distance from the sea

Chapter 10 an example— meteorologiCal Data

435

hum_min = [df_ravenna['humidity'].min(),

 df_cesena['humidity'].min(),

 df_faenza['humidity'].min(),

 df_ferrara['humidity'].min(),

 df_bologna['humidity'].min(),

 df_mantova['humidity'].min(),

 df_piacenza['humidity'].min(),

 df_milano['humidity'].min(),

 df_asti['humidity'].min(),

 df_torino['humidity'].min()

]

plt.plot(dist,hum_min,'bo')

The minimum humidity of 10 cities according to their distance from the sea are

represented in the chart in Figure 10-17.

Figure 10-17. The trend of the minimum humidity as a function of distance from
the sea

Chapter 10 an example— meteorologiCal Data

436

Looking at Figures 10-16 and 10-17, you can certainly see that the humidity is higher,

both the minimum and maximum, in the city closest to the sea. However, in my opinion,

it is not possible to say that there is a linear relationship or some other kind of relation to

draw a curve. The collected points (10) are too few to highlight a trend in this case.

 The RoseWind
Among the various meteorological data measured that we have collected for each city

are those relating to the wind:

• Wind degree (direction)

• Wind speed

If you analyze the dataframe, you will notice that the wind speed is relative to the

direction it blows and the time of day. For instance, each measurement shows the

direction in which the wind blows (see Figure 10-18).

Chapter 10 an example— meteorologiCal Data

437

Figure 10-18. The wind data contained in the dataframe

To better analyze this kind of data, it is necessary to visualize them. In this case a

linear chart in Cartesian coordinates is not the most optimal approach.

If you use the classic scatter plot with the points contained in a single dataframe:

plt.plot(df_ravenna['wind_deg'],df_ravenna['wind_speed'],'ro')

Chapter 10 an example— meteorologiCal Data

438

You get a chart like the one shown in Figure 10-19, which certainly is not very

educational.

To represent a distribution of points in 360 degrees, it’s best to use another type of

visualization: the polar chart. You have already seen this kind of chart in Chapter 8.

First you need to create a histogram, whereby the data are distributed over the

interval of 360 degrees divided into eight bins, each of which is 45 degrees.

hist, bins = np.histogram(df_ravenna['wind_deg'],8,[0,360])

print(hist)

print(bins)

The values returned are occurrences within each bin expressed by an array called hist:

[0 5 11 1 0 1 0 0]

and an array called bins, which defines the edges of each bin within the range of 360

degrees.

 [0. 45. 90. 135. 180. 225. 270. 315. 360.]

Figure 10-19. A scatter plot representing a distribution of 360 degrees

Chapter 10 an example— meteorologiCal Data

439

These arrays will be useful to correctly define the polar chart to be drawn. For this

purpose, you have to create a function in part by using the code contained in Chapter 8.

You will call this function showRoseWind(), and it will need three different arguments:

values is the array containing the values to be displayed, which in our case will be the

hist array; city_name is a string containing the name of the city to be shown as the chart

title; and max_value is an integer that will establish the maximum value for presenting

the blue color.

Defining a function of this kind helps you avoid rewriting the same code many times,

and it produces more modular code, which allows you to focus on the concepts related

to a particular operation within a function.

def showRoseWind(values,city_name,max_value):

 N = 8

 theta = np.arange(0.,2 * np.pi, 2 * np.pi / N)

 radii = np.array(values)

 plt.axes([0.025, 0.025, 0.95, 0.95], polar=True)

 colors = [(1-x/max_value, 1-x/max_value, 0.75) for x in radii]

 plt.bar(theta +np.pi/8, radii, width=(2*np.pi/N), bottom=0.0,

color=colors)

 plt.title(city_name,x=0.2, fontsize=20)

One thing that changed is the color map in colors. In this case, the closer to blue the

color of the slice is, the greater the value it represents.

Once you define a function, you can use it:

showRoseWind(hist,'Ravenna',max(hist))

Chapter 10 an example— meteorologiCal Data

440

Figure 10-20. The polar chart represents the distribution of values within a range
of 360 degrees

Executing this code, you will obtain a polar chart like the one shown in Figure 10-20.

As you can see in Figure 10-20, you have a range of 360 degrees divided into eight

areas of 45 degrees each (bin), in which a scale of values is represented radially. In each

of the eight areas, a slice is represented with a variable length that corresponds precisely

to the corresponding value. The more radially extended the slice is, the greater the value

represented. In order to increase the readability of the chart, a color scale has been

entered that corresponds to the extension of its slice. The wider the slice is, the more the

color tends to a deep blue.

This polar chart provides you with information about how the wind direction will be

distributed radially. In this case, the wind has blown purely toward the southwest/west

most of the day.

Chapter 10 an example— meteorologiCal Data

441

Once you have defined the showRoseWind function, it is very easy to observe the

winds with respect to any of the 10 sample cities.

hist, bin = np.histogram(df_ferrara['wind_deg'],8,[0,360])

print(hist)

showRoseWind(hist,'Ferrara', 15.0)

Figure 10-21 shows the polar charts of the 10 cities.

Figure 10-21. The polar charts display the distribution of the wind direction

 Calculating the Mean Distribution of the Wind Speed
Even the other quantity that relates the speed of the winds can be represented as a

distribution on 360 degrees.

Now define a feature called RoseWind_Speed that will allow you to calculate the mean

wind speeds for each of the eight bins into which 360 degrees are divided.

def RoseWind_Speed(df_city):

 degs = np.arange(45,361,45)

 tmp = []

 for deg in degs:

 tmp.append(df_city[(df_city['wind_deg']>(deg-46)) & (df_city['wind_

deg']<deg)]['wind_speed'].mean())

 return np.nan_to_num(tmp)

Chapter 10 an example— meteorologiCal Data

442

This function returns a NumPy array containing the eight mean wind speeds. This

array will be used as the first argument of the ShowRoseWind_Speed() function, which

is an improved version of the previous ShowRoseWind() function used to represent the

polar chart.

def showRoseWind_Speed(speeds,city_name):

 N = 8

 theta = np.arange(0,2 * np.pi, 2 * np.pi / N)

 radii = np.array(speeds)

 plt.axes([0.025, 0.025, 0.95, 0.95], polar=True)

 colors = [(1-x/10.0, 1-x/10.0, 0.75) for x in radii]

 bars = plt.bar(theta+np.pi/8, radii, width=(2*np.pi/N), bottom=0.0,

color=colors)

 plt.title(city_name,x=0.2, fontsize=20)

showRoseWind_Speed(RoseWind_Speed(df_ravenna),'Ravenna')

Figure 10-22 represents the RoseWind corresponding to the wind speeds distributed

around 360 degrees.

Figure 10-22. This polar chart represents the distribution of wind speeds within
360 degrees

Chapter 10 an example— meteorologiCal Data

443

At the end of all this work, you can save the dataframe as a CSV file, thanks to the

to_csv () function of the pandas library.

df_ferrara.to_csv('ferrara.csv')

df_milano.to_csv('milano.csv')

df_mantova.to_csv('mantova.csv')

df_ravenna.to_csv('ravenna.csv')

df_torino.to_csv('torino.csv')

df_asti.to_csv('asti.csv')

df_bologna.to_csv('bologna.csv')

df_piacenza.to_csv('piacenza.csv')

df_cesena.to_csv('cesena.csv')

df_faenza.to_csv('faenza.csv')

 Conclusions
The purpose of this chapter was mainly to show how you can get information from

raw data. Some of this information will not lead to important conclusions, while other

information will lead to the confirmation of a hypothesis, thus increasing your state of

knowledge. These are the cases in which data analysis has led to a success.

In the next chapter, you will see another case relating to real data obtained from

an open data source. You’ll also see how you can further enhance the graphical

representation of the data using the D3 JavaScript library. This library, although not

Python, can be easily integrated into Python.

Chapter 10 an example— meteorologiCal Data

445
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_11

CHAPTER 11

Embedding the JavaScript
D3 Library in the IPython
Notebook
In this chapter, you will see how to extend the capabilities of the graphical representation

including the JavaScript D3 library in your Jupyter Notebook. This library has enormous

potential graphics and allows you to build graphical representations that even the

matplotlib library cannot represent.

In the course of the various examples you will see how you can implement JavaScript

code in a Python environment, using the large capacity of the integrative Jupyter

Notebook. Also you’ll see different ways to use the data contained in Pandas dataframes

Pandas in representations based on JavaScript code.

 The Open Data Source for Demographics
In this chapter, you will use demographic data as the dataset on which to perform the

analysis. A good starting point is the one suggested in the Web article "Embedding

Interactive Charts on an IPython Notebook," written by Agustin Barto (http://www.

machinalis.com/blog/embedding-interactive-charts-on-an-ipython-nb/). This

article suggested the site of the United States Census Bureau (http://www.census.gov)

as the data source for demographics (see Figure 11-1).

http://www.machinalis.com/blog/embedding-interactive-charts-on-an-ipython-nb/
http://www.machinalis.com/blog/embedding-interactive-charts-on-an-ipython-nb/
http://www.census.gov

446

The United States Census Bureau is part of the United States Department of

Commerce, and is officially in charge of collecting demographic data on the U.S.

population and reporting statistics about it. Its site provides a large amount of data as

CSV files, which, as you have seen in previous chapters, are easily imported in the form

of Pandas dataframes.

For the purposes of this chapter, you want the data that estimates the population

of each state and counties in the United States. A CSV file that contains all of this

information is CO-EST2014-alldata.csv.

So first, open Jupyter Notebook and in the first frame, import all aspects of the

Python library that could later be needed in any page of IPython Notebook.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

Now that you have all the necessary libraries, you can start by importing data

from Census.gov in your Notebook. So you need to upload the CO-EST2014-alldata.

csv file directly in the form of a Pandas dataframe. The pd.read_csv() function will

Figure 11-1. This is the home page of the United States Census Bureau

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

447

convert tabular data contained in a CSV file to a Pandas dataframe, which you will name

pop2014. Using the dtype option, you can force the interpretation of some fields that

could be interpreted as numbers, as strings instead.

url = "https://raw.githubusercontent.com/dwdii/IS608-VizAnalytics/master/

FinalProject/Data/CO-EST2014-alldata.csv"

pop2014 =pd.read_csv(url,encoding='latin-1',dtype={'STATE': 'str',

'COUNTY': 'str'})

Once you have acquired and collected data in the pop2014 dataframe, you can see

how they are structured by simply writing:

pop2014

You will obtain an image like that shown in Figure 11-2.

Carefully analyzing the nature of the data, you can see how they are organized

within the dataframe. The SUMLEV column contains the geographic level of the data; for

example, 40 indicates a state and 50 indicates data covering a single county.

The REGION, DIVISION, STATE, and COUNTY columns contain hierarchical subdivisions

of all areas in which the U.S. territory has been divided. STNAME and CTYNAME indicate

the name of the state and the county, respectively. The following columns contain the

data on population. CENSUS2010POP is the column that contains the actual data on the

population, that is, the data that were collected by the 2010 census. Following that are

other columns with the population estimates calculated for each year. In this example,

you can see 2010 (2011, 2012, 2013, and 2014 are also in the dataframe but not shown in

Figure 11-2).

Figure 11-2. The pop2014 dataframe contains all demographics for the years
from 2010 to 2014

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

448

You will use these values of population estimates as data to be represented in the

examples discussed in this chapter.

The pop2014 dataframe contains a large number of columns and rows that you

are not interested in, so it is smart to eliminate unnecessary information. First, you

are interested in the values of the people who relate to entire states, and so you extract

only the rows with SUMLEV equal to 40. Collect these data within the pop2014_by_state

dataframe.

pop2014_by_state = pop2014[pop2014.SUMLEV == 40]

pop2014_by_state

You get a dataframe like the one shown in Figure 11-3.

Figure 11-3. The pop2014_by_state dataframe contains all demographics related
to the states

However, the dataframe just obtained still contains too many columns with

unnecessary information. Given the high number of columns, instead of carrying out

their removal with the drop() function, it is more convenient to perform an extraction.

states = pop2014_by_state[['STNAME','POPESTIMATE2011', 'POPESTIMATE2012',

'POPESTIMATE2013','POPESTIMATE2014']]

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

449

Now that you have the essential information needed, you can start to make graphical

representations. For example, you could determine the five most populated states in the

country.

states.sort_values(['POPESTIMATE2014'], ascending=False)[:5]

Listing them in descending order, you will receive a dataframe as shown in Figure 11- 4.

Figure 11-4. The five most populous states in the United States

For example, you could use a bar chart to represent the five most populous states in

descending order. This work is easily achieved using matplotlib, but in this chapter, you

will take advantage of this simple representation to see how you can use the JavaScript

D3 library to create the same representation.

 The JavaScript D3 Library
D3 is a JavaScript library that allows direct inspection and manipulation of the DOM

object (HTML5), but it is intended solely for data visualization and it does its job

excellently. In fact, the name D3 is derived from the three Ds contained in “data-driven

documents.” D3 was entirely developed by Mike Bostock.

This library is proving to be very versatile and powerful, thanks to the technologies

upon which it is based: JavaScript, SVG, and CSS. D3 combines powerful visualization

components with a data-driven approach to the DOM manipulation. In so doing, D3

takes full advantage of the capabilities of the modern browser.

Given that even Jupyter Notebooks are Web objects and use the same technologies

that are the basis of the current browser, the idea of using this library, although

JavaScript, within the notebook is not as preposterous as it may seem at first.

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

450

For those not familiar with the JavaScript D3 library and want to know more about

this topic, I recommend reading another book, entitled “Create Web Charts with D3,”

by F. Nelli (Apress, 2014).

Indeed, Jupyter Notebook has the magic function %% javascript to integrate

JavaScript code within the Python code.

But the JavaScript code, in a manner similar to Python, requires you to import some

libraries. The libraries are available online and must be loaded each time you launch the

execution. In HTML, the process of importing library has a particular construct:

<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js">

</script>

This is an HTML tag. To make the import within an Jupyter Notebook, you should

instead use this different construct:

%%javascript

require.config({

 paths: {

 d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min'

 }

});

Using require.config(), you can import all the necessary JavaScript libraries.

In addition, if you are familiar with HTML code, you will know for sure that you need

to define CSS styles if you want to strengthen the capacity of visualization of an HTML

page. In parallel, also in the Jupyter Notebook, you can define a set of CSS styles. To do

this you can write HTML code, thanks to the HTML() function belonging to the IPython.

core.display module. Therefore, make the appropriate CSS definitions as follows:

from IPython.core.display import display, Javascript, HTML

display(HTML("""

<style>

.bar {

 fill: steelblue;

}

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

451

.bar:hover{

 fill: brown;

}

.axis {

 font: 10px sans-serif;

}

.axis path,

.axis line {

 fill: none;

 stroke: #000;

}

.x.axis path {

 display: none;

}

</style>

<div id="chart_d3" />

"""))

At the bottom of the previous code, you notice that the <div> HTML tag is identified

as chart_d3. This tag identifies the location where it will be represented.

Now you have to write the JavaScript code by using the functions provided by the

D3 library. Using the Template object provided by the Jinja2 library, you can define

dynamic JavaScript code where you can replace the text depending on the values

contained in a dataframe Pandas.

If there is still not a Jinja2 library installed on your system, you can always install it

with Anaconda.

conda install jinja2

Or by using

pip install jinja2

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

452

After you have installed this library, you can define the template.

import jinja2

myTemplate = jinja2.Template("""

require(["d3"], function(d3){

 var data = []

 {% for row in data %}

 data.push({ 'state': '{{ row[1] }}', 'population': {{ row[5] }} });

 {% endfor %}

d3.select("#chart_d3 svg").remove()

 var margin = {top: 20, right: 20, bottom: 30, left: 40},

 width = 800 - margin.left - margin.right,

 height = 400 - margin.top - margin.bottom;

 var x = d3.scale.ordinal()

 .rangeRoundBands([0, width], .25);

 var y = d3.scale.linear()

 .range([height, 0]);

 var xAxis = d3.svg.axis()

 .scale(x)

 .orient("bottom");

 var yAxis = d3.svg.axis()

 .scale(y)

 .orient("left")

 .ticks(10)

 .tickFormat(d3.format('.1s'));

 var svg = d3.select("#chart_d3").append("svg")

 .attr("width", width + margin.left + margin.right)

 .attr("height", height + margin.top + margin.bottom)

 .append("g")

 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

453

 x.domain(data.map(function(d) { return d.state; }));

 y.domain([0, d3.max(data, function(d) { return d.population; })]);

 svg.append("g")

 .attr("class", "x axis")

 .attr("transform", "translate(0," + height + ")")

 .call(xAxis);

 svg.append("g")

 .attr("class", "y axis")

 .call(yAxis)

 .append("text")

 .attr("transform", "rotate(-90)")

 .attr("y", 6)

 .attr("dy", ".71em")

 .style("text-anchor", "end")

 .text("Population");

 svg.selectAll(".bar")

 .data(data)

 .enter().append("rect")

 .attr("class", "bar")

 .attr("x", function(d) { return x(d.state); })

 .attr("width", x.rangeBand())

 .attr("y", function(d) { return y(d.population); })

 .attr("height", function(d) { return height - y(d.population); });

});

""");

You aren’t finished. Now is the time to launch the representation of this D3 chart you

have just defined. You also need to write the commands needed to pass data contained

in the Pandas dataframe to the template, so they can be directly integrated into the

JavaScript code written previously. The representation of JavaScript code, or rather the

template just defined, will be executed by launching the render() function.

display(Javascript(myTemplate.render(

 data=states.sort_values(['POPESTIMATE2012'], ascending=False)[:10].

itertuples()

)))

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

454

The bar chart will appear in the previous frame in which the <div> was placed, as

shown in Figure 11-5, which shows all the population estimates for the year 2014.

 Drawing a Clustered Bar Chart
So far you have relied broadly on what had been described in the fantastic article

written by Barto. However, the type of data that you extracted has given you the trend of

population estimates in the last four years for the United States. A more useful chart for

visualizing data would be to show the trend of the population of each state over time.

To do that, a good choice is to use a clustered bar chart, where each cluster is one

of the five most populous states and each cluster will have four bars to represent the

population in a given year.

At this point you can modify the previous code or write code again in your Jupyter

Notebook.

display(HTML("""

<style>

.bar2011 {

 fill: steelblue;

}

Figure 11-5. The five most populous states of the United States represented by a
bar chart relative to 2014

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

455

.bar2012 {

 fill: red;

}

.bar2013 {

 fill: yellow;

}

.bar2014 {

 fill: green;

}

.axis {

 font: 10px sans-serif;

}

.axis path,

.axis line {

 fill: none;

 stroke: #000;

}

.x.axis path {

 display: none;

}

</style>

<div id="chart_d3" />

"""))

You have to modify the template as well, by adding the other three sets of data

corresponding to the years 2011, 2012, and 2013. These years will be represented by a

different color on the clustered bar chart.

import jinja2

myTemplate = jinja2.Template("""

require(["d3"], function(d3){

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

456

 var data = []

 var data2 = []

 var data3 = []

 var data4 = []

 {% for row in data %}

 data.push ({ 'state': '{{ row[1] }}', 'population': {{ row[2] }} });

 data2.push({ 'state': '{{ row[1] }}', 'population': {{ row[3] }} });

 data3.push({ 'state': '{{ row[1] }}', 'population': {{ row[4] }} });

 data4.push({ 'state': '{{ row[1] }}', 'population': {{ row[5] }} });

 {% endfor %}

d3.select("#chart_d3 svg").remove()

 var margin = {top: 20, right: 20, bottom: 30, left: 40},

 width = 800 - margin.left - margin.right,

 height = 400 - margin.top - margin.bottom;

 var x = d3.scale.ordinal()

 .rangeRoundBands([0, width], .25);

 var y = d3.scale.linear()

 .range([height, 0]);

 var xAxis = d3.svg.axis()

 .scale(x)

 .orient("bottom");

 var yAxis = d3.svg.axis()

 .scale(y)

 .orient("left")

 .ticks(10)

 .tickFormat(d3.format('.1s'));

 var svg = d3.select("#chart_d3").append("svg")

 .attr("width", width + margin.left + margin.right)

 .attr("height", height + margin.top + margin.bottom)

 .append("g")

 . attr("transform", "translate(" + margin.left + "," +

margin.top + ")");

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

457

 x.domain(data.map(function(d) { return d.state; }));

 y.domain([0, d3.max(data, function(d) { return d.population; })]);

 svg.append("g")

 .attr("class", "x axis")

 .attr("transform", "translate(0," + height + ")")

 .call(xAxis);

 svg.append("g")

 .attr("class", "y axis")

 .call(yAxis)

 .append("text")

 .attr("transform", "rotate(-90)")

 .attr("y", 6)

 .attr("dy", ".71em")

 .style("text-anchor", "end")

 .text("Population");

 svg.selectAll(".bar2011")

 .data(data)

 .enter().append("rect")

 .attr("class", "bar2011")

 .attr("x", function(d) { return x(d.state); })

 .attr("width", x.rangeBand()/4)

 .attr("y", function(d) { return y(d.population); })

 .attr("height", function(d) { return height - y(d.population); });

 svg.selectAll(".bar2012")

 .data(data2)

 .enter().append("rect")

 .attr("class", "bar2012")

 .attr("x", function(d) { return (x(d.state)+x.rangeBand()/4); })

 .attr("width", x.rangeBand()/4)

 .attr("y", function(d) { return y(d.population); })

 .attr("height", function(d) { return height - y(d.population); });

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

458

 svg.selectAll(".bar2013")

 .data(data3)

 .enter().append("rect")

 .attr("class", "bar2013")

 .attr("x", function(d) { return (x(d.state)+2*x.rangeBand()/4); })

 .attr("width", x.rangeBand()/4)

 .attr("y", function(d) { return y(d.population); })

 .attr("height", function(d) { return height - y(d.population); });

 svg.selectAll(".bar2014")

 .data(data4)

 .enter().append("rect")

 .attr("class", "bar2014")

 .attr("x", function(d) { return (x(d.state)+3*x.rangeBand()/4); })

 .attr("width", x.rangeBand()/4)

 .attr("y", function(d) { return y(d.population); })

 .attr("height", function(d) { return height - y(d.population); });

});

""");

The series of data to be passed from the dataframe to the template are now four,

so you have to refresh the data and the changes that you have just made to the code.

Therefore, you need to rerun the code of the render() function.

display(Javascript(myTemplate.render(

 data=states.sort_values(['POPESTIMATE2014'], ascending=False)[:5].

itertuples()

)))

Once you have launched the render() function again, you get a chart like the one

shown in Figure 11-6.

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

459

 The Choropleth Maps
In the previous sections you saw how to use JavaScript code and the D3 library to

represent a bar chart. Well, these achievements would have been easy with matplotlib

and perhaps implemented in an even better way. The purpose of the previous code was

only for educational purposes.

Something quite different is the use of much more complex views that are

unobtainable by matplotlib. So now we will put in place the true potential made

available by the D3 library. The choropleth maps are very complex types of

representations.

The choropleth maps are geographical representations where the land areas are

divided into portions characterized by different colors. The colors and the boundaries

between a portion geographical and another are themselves representations of data.

This type of representation is very useful to represent the results of data analysis

carried out on demographic or economic information, and this is also the case for data

that correlates to their geographical distributions.

Figure 11-6. A clustered bar chart representing the populations of the five most
populous states from 2011 to 2014

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

460

The representation of choropleth is based on a particular file called TopoJSON. This

type of file contains all the inside information representing a choropleth map such as the

United States (see Figure 11-7).

Figure 11-7. The representation of a choropleth map of U.S. territories with no
value related to each county or state

A good link to find such material is the U.S. Atlas TopoJSON (https://github.com/

mbostock/us-atlas), but a lot of literature about it is available online.

A representation of this kind is not only possible but is also customizable. Thanks to

the D3 library, you can correlate the geographic portions based on the value of particular

columns contained in a dataframe.

First, let’s start with an example already on the Internet, in the D3 library,

http://bl.ocks.org/mbostock/4060606, but fully developed in HTML. So now you will

learn how to adapt a D3 example in HTML in an IPython Notebook.

If you look at the code shown on the web page of the example, you can see that there

are three necessary JavaScript libraries. This time, in addition to the D3 library, we need

to import queue and TopoJSON libraries.

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

https://github.com/mbostock/us-atlas
https://github.com/mbostock/us-atlas
http://bl.ocks.org/mbostock/4060606

461

<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js">

</script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/queue-async/1.0.7/

queue.min.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/topojson/1.6.19/

topojson.min.js"></script>

So you have to use require.config() as you did in the previous sections.

%%javascript

require.config({

 paths: {

 d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min',

 queue: '//cdnjs.cloudflare.com/ajax/libs/queue-async/1.0.7/queue.min',

 topojson: ' //cdnjs.cloudflare.com/ajax/libs/topojson/1.6.19/

topojson.min'

 }

});

The pertinent part of CSS is shown again, all within the HTML() function.

from IPython.core.display import display, Javascript, HTML

display(HTML("""

<style>

.counties {

 fill: none;

}

.states {

 fill: none;

 stroke: #fff;

 stroke-linejoin: round;

}

.q0-9 { fill:rgb(247,251,255); }

.q1-9 { fill:rgb(222,235,247); }

.q2-9 { fill:rgb(198,219,239); }

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

462

.q3-9 { fill:rgb(158,202,225); }

.q4-9 { fill:rgb(107,174,214); }

.q5-9 { fill:rgb(66,146,198); }

.q6-9 { fill:rgb(33,113,181); }

.q7-9 { fill:rgb(8,81,156); }

.q8-9 { fill:rgb(8,48,107); }

</style>

<div id="choropleth" />

"""))

Here is the new template that mirrors the code shown in the Bostock example, with

some changes:

import jinja2

choropleth = jinja2.Template("""

require(["d3","queue","topojson"], function(d3,queue,topojson){

// var data = []

// {% for row in data %}

// data.push({ 'state': '{{ row[1] }}', 'population': {{ row[2] }} });

// {% endfor %}

d3.select("#choropleth svg").remove()

var width = 960,

 height = 600;

var rateById = d3.map();

var quantize = d3.scale.quantize()

 .domain([0, .15])

 .range(d3.range(9).map(function(i) { return "q" + i + "-9"; }));

var projection = d3.geo.albersUsa()

 .scale(1280)

 .translate([width / 2, height / 2]);

var path = d3.geo.path()

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

463

 .projection(projection);

//row to modify

var svg = d3.select("#choropleth").append("svg")

 .attr("width", width)

 .attr("height", height);

queue()

 .defer(d3.json, "us.json")

 .defer(d3.tsv, "unemployment.tsv", function(d) { rateById.set(d.id,

+d.rate); })

 .await(ready);

function ready(error, us) {

 if (error) throw error;

 svg.append("g")

 .attr("class", "counties")

 .selectAll("path")

 .data(topojson.feature(us, us.objects.counties).features)

 .enter().append("path")

 .attr("class", function(d) { return quantize(rateById.get(d.id)); })

 .attr("d", path);

 svg.append("path")

 .datum(topojson.mesh(us, us.objects.states, function(a, b) { return a

!== b; }))

 .attr("class", "states")

 .attr("d", path);

}

});

""");

Now you launch the representation, this time without any value for the template,

since all values are contained in the us.json and unemployment.tsv files (you can find

them in the source code of this book).

display(Javascript(choropleth.render()))

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

464

The results are identical to those shown in the Bostock example (see Figure 11-8).

 The Choropleth Map of the U.S. Population in 2014
Now that you have seen how to extract demographic information from the U.S. Census

Bureau and you can create the choropleth map, you can unify both things to represent

a choropleth map showing the population values. The more populous the county, the

deeper blue it will be. In counties with very low population levels, the hue will tend

toward white.

In the first section of the chapter, you extracted information on the states by the

pop2014 dataframe. This was done by selecting the rows of the dataframe with SUMLEV

values equal to 40. In this example, you instead need the values of the populations of

each county and so you have to take out a new dataframe by taking pop2014 using only

lines with a SUMLEV of 50.

Figure 11-8. The choropleth map of the United States with the coloring of the
counties based on the values contained in the file TSV

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

465

You must instead select the rows to level 50.

pop2014_by_county = pop2014[pop2014.SUMLEV == 50]

pop2014_by_county

You get a dataframe that contains all U.S. counties, as shown in Figure 11-9.

Figure 11-9. The pop2014_by_county dataframe contains all demographics of all
U.S. counties

You must use your data instead of the TSV previously used. Inside it, there are the

ID numbers corresponding to the various counties. You can use a file on the Web to

determine their names. You can download it and turn it into a dataframe.

USJSONnames = pd.read_table('us-county-names.tsv')

USJSONnames

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

466

Thanks to this file, you see the codes with the corresponding counties

(see Figure 11- 10).

If you take for example the Baldwin county”

USJSONnames[USJSONnames['name'] == 'Baldwin']

Figure 11-10. The codes of the counties are contained in the file TSV

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

467

You can see that there are actually two counties with the same name, but they are

identified by two different identifiers (Figure 11-11).

You get a table and see that there are two counties and two different codes.

Now you see this in your dataframe with data taken from the data source census.gov

(see Figure 11-12).

pop2014_by_county[pop2014_by_county['CTYNAME'] == 'Baldwin County']

You can recognize that there is a match. The ID contained in TOPOJSON matches the

numbers in the STATE and COUNTY columns if combined together, but removing the 0

when it is the digit at the beginning of the code. So now you can reconstruct all the data

needed to replicate the TSV example of choropleth from the counties dataframe. The

file will be saved as population.csv.

counties = pop2014_by_county[['STATE','COUNTY','POPESTIMATE2014']]

counties.is_copy = False

counties['id'] = counties['STATE'].str.lstrip('0') + "" +

counties['COUNTY']

del counties['STATE']

del counties['COUNTY']

Figure 11-11. There are two Baldwin counties

Figure 11-12. The ID codes in the TSV files correspond to the combination of the
values contained in the STATE and COUNTY columns

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

468

counties.columns = ['pop','id']

counties = counties[['id','pop']]

counties.to_csv('population.csv')

Now you rewrite the contents of the HTML() function by specifying a new <div> tag

with the ID as choropleth2.

from IPython.core.display import display, Javascript, HTML

display(HTML("""

<style>

.counties {

 fill: none;

}

.states {

 fill: none;

 stroke: #fff;

 stroke-linejoin: round;

}

.q0-9 { fill:rgb(247,251,255); }

.q1-9 { fill:rgb(222,235,247); }

.q2-9 { fill:rgb(198,219,239); }

.q3-9 { fill:rgb(158,202,225); }

.q4-9 { fill:rgb(107,174,214); }

.q5-9 { fill:rgb(66,146,198); }

.q6-9 { fill:rgb(33,113,181); }

.q7-9 { fill:rgb(8,81,156); }

.q8-9 { fill:rgb(8,48,107); }

</style>

<div id="choropleth2" />

"""))

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

469

Finally, you have to define a new Template object.

choropleth2 = jinja2.Template("""

require(["d3","queue","topojson"], function(d3,queue,topojson){

 var data = []

d3.select("#choropleth2 svg").remove()

var width = 960,

 height = 600;

var rateById = d3.map();

var quantize = d3.scale.quantize()

 .domain([0, 1000000])

 .range(d3.range(9).map(function(i) { return "q" + i + "-9"; }));

var projection = d3.geo.albersUsa()

 .scale(1280)

 .translate([width / 2, height / 2]);

var path = d3.geo.path()

 .projection(projection);

var svg = d3.select("#choropleth2").append("svg")

 .attr("width", width)

 .attr("height", height);

queue()

 .defer(d3.json, "us.json")

 .defer(d3.csv,"population.csv", function(d) { rateById.set(d.id,

+d.pop); })

 .await(ready);

function ready(error, us) {

 if (error) throw error;

 svg.append("g")

 .attr("class", "counties")

 .selectAll("path")

 .data(topojson.feature(us, us.objects.counties).features)

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

470

 .enter().append("path")

 .attr("class", function(d) { return quantize(rateById.get(d.id)); })

 .attr("d", path);

 svg.append("path")

 . datum(topojson.mesh(us, us.objects.states, function(a, b) { return a

!== b; }))

 .attr("class", "states")

 .attr("d", path);

}

});

""");

Finally, you can execute the render() function to get the chart.

display(JavaScript(choropleth2.render()))

The choropleth map will be shown with the counties differently colored depending

on their population, as shown in Figure 11-13.

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

471

 Conclusions
In this chapter, you have seen how it is possible to further extend the ability to display

data using a JavaScript library called D3. Choropleth maps are just one of many

examples of advanced graphics that are used to represent data. This is also a very good

way to see the Jupyter Notebook in action. The world does not revolve around Python

alone, but Python can provide additional capabilities for our work.

In the next chapter, you will see how to apply data analysis to images. You’ll see how

easy it is to build a model that can recognize handwritten numbers.

Figure 11-13. The choropleth map of the United States shows the density of the
population of all counties

Chapter 11 embedding the JavaSCript d3 Library in the ipython notebook

473
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_12

CHAPTER 12

Recognizing
Handwritten Digits
So far you have seen how to apply the techniques of data analysis to Pandas dataframes

containing numbers and strings. Indeed, data analysis is not limited to numbers and

strings, because images and sounds can also be analyzed and classified.

In this short but no-less-important chapter, you’ll learn about handwriting

recognition.

 Handwriting Recognition
Recognizing handwritten text is a problem that can be traced back to the first automatic

machines that needed to recognize individual characters in handwritten documents.

Think about, for example, the ZIP codes on letters at the post office and the automation

needed to recognize these five digits. Perfect recognition of these codes is necessary in

order to sort mail automatically and efficiently.

Included among the other applications that may come to mind is OCR (Optical

Character Recognition) software. OCR software must read handwritten text, or pages of

printed books, for general electronic documents in which each character is well defined.

But the problem of handwriting recognition goes farther back in time, more

precisely to the early 20th Century (1920s), when Emanuel Goldberg (1881–1970) began

his studies regarding this issue and suggested that a statistical approach would be an

optimal choice.

To address this issue in Python, the scikit-learn library provides a good example

to better understand this technique, the issues involved, and the possibility of making

predictions.

474

 Recognizing Handwritten Digits with scikit-learn
The scikit-learn library (http://scikit-learn.org/) enables you to approach this

type of data analysis in a way that is slightly different from what you’ve used in the book

so far. The data to be analyzed is closely related to numerical values or strings, but can

also involve images and sounds.

The problem you have to face in this chapter involves predicting a numeric value,

and then reading and interpreting an image that uses a handwritten font.

So even in this case you will have an estimator with the task of learning through

a fit() function, and once it has reached a degree of predictive capability (a model

sufficiently valid), it will produce a prediction with the predict() function. Then we will

discuss the training set and validation set, created this time from a series of images.

Now open a new IPython Notebook session from the command line by entering the

following command:

ipython notebook

Then create a new Notebook by choosing New ➤ Python 3, as shown in Figure 12-1.

Figure 12-1. The home page of the IPython Notebook (Jupyter)

Chapter 12 reCognizing handwritten digits

http://scikit-learn.org/

475

An estimator that is useful in this case is sklearn.svm.SVC, which uses the technique

of Support Vector Classification (SVC).

Thus, you have to import the svm module of the scikit-learn library. You can create

an estimator of SVC type and then choose an initial setting, assigning the values C and

gamma generic values. These values can then be adjusted in a different way during the

course of the analysis.

from sklearn import svm

svc = svm.SVC(gamma=0.001, C=100.)

 The Digits Dataset
As you saw in Chapter 8, the scikit-learn library provides numerous datasets that are

useful for testing many problems of data analysis and prediction of the results. Also in

this case there is a dataset of images called Digits.

This dataset consists of 1,797 images that are 8x8 pixels in size. Each image is a

handwritten digit in grayscale, as shown in Figure 12-2.

Figure 12-2. One of 1,797 handwritten number images that make up the dataset
digit

Chapter 12 reCognizing handwritten digits

476

Thus, you can load the Digits dataset into your Notebook.

from sklearn import datasets

digits = datasets.load_digits()

After loading the dataset, you can analyze the content. First, you can read lots of

information about the datasets by calling the DESCR attribute.

print(digits.DESCR)

For a textual description of the dataset, the authors who contributed to its creation

and the references will appear as shown in Figure 12-3.

Figure 12-3. Each dataset in the scikit-learn library has a field containing all the
information

Chapter 12 reCognizing handwritten digits

477

The images of the handwritten digits are contained in a digits.images array. Each

element of this array is an image that is represented by an 8x8 matrix of numerical values

that correspond to a grayscale from white, with a value of 0, to black, with the value 15.

digits.images[0]

You will get the following result:

array([[0., 0., 5., 13., 9., 1., 0., 0.],

 [0., 0., 13., 15., 10., 15., 5., 0.],

 [0., 3., 15., 2., 0., 11., 8., 0.],

 [0., 4., 12., 0., 0., 8., 8., 0.],

 [0., 5., 8., 0., 0., 9., 8., 0.],

 [0., 4., 11., 0., 1., 12., 7., 0.],

 [0., 2., 14., 5., 10., 12., 0., 0.],

 [0., 0., 6., 13., 10., 0., 0., 0.]])

You can visually check the contents of this result using the matplotlib library.

import matplotlib.pyplot as plt

%matplotlib inline

plt.imshow(digits.images[0], cmap=plt.cm.gray_r, interpolation='nearest')

By launching this command, you will obtain the grayscale image shown in

Figure 12- 4.

Figure 12-4. One of the 1,797 handwritten digits

Chapter 12 reCognizing handwritten digits

478

The numerical values represented by images, i.e., the targets, are contained in the

digit.targets array.

digits.target

You will get the following result:

array([0, 1, 2, ..., 8, 9, 8])

It was reported that the dataset is a training set consisting of 1,797 images. You can

determine if that is true.

digits.target.size

This will be the result:

1797

 Learning and Predicting
Now that you have loaded the Digits datasets into your notebook and have defined an

SVC estimator, you can start learning.

As you learned in Chapter 8, once you define a predictive model, you must instruct it

with a training set, which is a set of data in which you already know the belonging class.

Given the large quantity of elements contained in the Digits dataset, you will certainly

obtain a very effective model, i.e., one that’s capable of recognizing with good certainty

the handwritten number.

This dataset contains 1,797 elements, and so you can consider the first 1,791 as a

training set and will use the last six as a validation set.

You can see in detail these six handwritten digits by using the matplotlib library:

import matplotlib.pyplot as plt

%matplotlib inline

plt.subplot(321)

plt.imshow(digits.images[1791], cmap=plt.cm.gray_r,

interpolation='nearest')

plt.subplot(322)

plt.imshow(digits.images[1792], cmap=plt.cm.gray_r,

interpolation='nearest')

Chapter 12 reCognizing handwritten digits

479

plt.subplot(323)

plt.imshow(digits.images[1793], cmap=plt.cm.gray_r,

interpolation='nearest')

plt.subplot(324)

plt.imshow(digits.images[1794], cmap=plt.cm.gray_r,

interpolation='nearest')

plt.subplot(325)

plt.imshow(digits.images[1795], cmap=plt.cm.gray_r,

interpolation='nearest')

plt.subplot(326)

plt.imshow(digits.images[1796], cmap=plt.cm.gray_r,

interpolation='nearest')

This will produce an image with six digits, as shown in Figure 12-5.

Figure 12-5. The six digits of the validation set

Chapter 12 reCognizing handwritten digits

480

Now you can train the svc estimator that you defined earlier.

svc.fit(digits.data[1:1790], digits.target[1:1790])

After a short time, the trained estimator will appear with text output.

SVC(C=100.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,

 gamma=0.001, kernel='rbf', max_iter=-1, probability=False,

 random_state=None, shrinking=True, tol=0.001, verbose=False)

Now you have to test your estimator, making it interpret the six digits of the

validation set.

svc.predict(digits.data[1791:1976])

You will obtain these results:

array([4, 9, 0, 8, 9, 8])

If you compare them with the actual digits, as follows:

digits.target[1791:1976]

array([4, 9, 0, 8, 9, 8])

You can see that the svc estimator has learned correctly. It is able to recognize the

handwritten digits, interpreting correctly all six digits of the validation set.

 Recognizing Handwritten Digits with TensorFlow
You have just seen an example of how machine learning techniques can recognize

handwritten numbers. Now the same problem will be applied to the deep learning

techniques that we used in Chapter 9.

Given the great value of the MNIST dataset, the TensorFlow library also contains a

copy of it. It will therefore be really easy to perform studies and tests on neural networks

with this dataset, without having to download or import them from other data sources.

Importing the MNIST dataset into the Jupyter Notebook (in any Python session) is

very simple; you just import tensorflow.contrib.learn.python.learn.datasets.

mnist directly like any other Python package. To load the dataset in a variable, you must

use the read_data_sets() function. Thus, an optimal form for importing the dataset is

as follows.

Chapter 12 reCognizing handwritten digits

481

from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_

sets

import numpy as np

import matplotlib.pyplot as plt

Since the dataset is contained in compressed files, these will automatically be

downloaded to the session workspace as soon as you call the read_data_sets function.

A good practice is to create a directory that contains them as MNIST_data.

mnist = read_data_sets ("MNIST_data/", one_hot=False)

In the output, the downloaded files will be shown as follows:

Extracting MNIST_data/train-images-idx3-ubyte.gz

Extracting MNIST_data/train-labels-idx1-ubyte.gz

Extracting MNIST_data/t10k-images-idx3-ubyte.gz

Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

The MNIST data is split into three parts: 55,000 data points of training data (mnist.

train), 10,000 points of test data (mnist.test), and 5,000 points of validation data

(mnist.validation).

Given the large size of this dataset, a good practice is to break it into smaller batches,

especially when it needs to be analyzed as a training set. To help you do this, TensorFlow

uses the next_batch(n) function, which allows you to extract n elements from the

training set. Whenever the next_batch(n) function is called, the n following elements

will be extracted, until the end of the training set is reached.

To view the first 10 elements of the training set, enter the following code.

pixels,real_values = mnist.train.next_batch(10)

print("list of values loaded",real_values)

list of values loaded [2 6 8 3 4 2 0 9 8 7]

By releasing the same code, you will get the following 10 elements of the training set,

and so on.

pixels,real_values = mnist.train.next_batch(10)

print("list of values loaded",real_values)

list of values loaded [6 1 8 5 0 1 8 4 7 3]

Chapter 12 reCognizing handwritten digits

482

If you want to see the image of the handwritten digit of one of the elements

contained in pixels (an array containing grayscale images), you can use matplotlib.

image = np.reshape(pixels[1,:],[28,28])

plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')

plt.show()

You will get the black and white image of a handwritten number similar to the one

shown in Figure 12-6.

 Learning and Predicting
Now that you’ve seen how to get the training set, the testing set, and the validation set

with TensorFlow, it’s time to do an analysis with a neural network very similar to the one

you used in Chapter 9.

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

import tensorflow as tf

import matplotlib.pyplot as plt

Figure 12-6. A digit of the training set in the MNIST dataset provided by the
TensorFlow library

Chapter 12 reCognizing handwritten digits

483

Parameters

learning_rate = 0.01

training_epochs = 25

batch_size = 100

display_step = 1

tf Graph Input

x = tf.placeholder("float", [None, 784]) # mnist data image of shape

28*28=784

y = tf.placeholder("float", [None, 10]) # 0-9 digits recognition => 10 classes

Create model

Set model weights

W = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

evidence = tf.matmul(x, W) + b

Construct model

activation = tf.nn.softmax(evidence) # Softmax

Minimize error using cross entropy

cross_entropy = y*tf.log(activation)

cost = tf.reduce_mean(-tf.reduce_sum(cross_entropy,reduction_indices=1))

optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

#Plot settings

avg_set = []

epoch_set=[]

Initializing the variables

init = tf.global_variables_initializer()

Launch the graph

with tf.Session() as sess:

 sess.run(init)

 # Training cycle

 for epoch in range(training_epochs):

Chapter 12 reCognizing handwritten digits

484

 avg_cost = 0.

 total_batch = int(mnist.train.num_examples/batch_size)

 # Loop over all batches

 for i in range(total_batch):

 batch_xs, batch_ys = mnist.train.next_batch(batch_size)

 sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})

 avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_

ys})/total_batch

 if epoch % display_step == 0:

 print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".

format(avg_cost))

 avg_set.append(avg_cost)

 epoch_set.append(epoch+1)

 print("Training phase finished")

 plt.plot(epoch_set,avg_set, 'o', label='Logistic Regression Training

phase')

 plt.ylabel('cost')

 plt.xlabel('epoch')

 plt.legend()

 plt.show()

 # Test model

 correct_prediction = tf.equal(tf.argmax(activation, 1), tf.argmax(y, 1))

 # Calculate accuracy

 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

 print("Model accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.

test.labels}))

By performing the analysis, you will obtain the cost trend during the learning phase

(epoch cycle) and when the neural network will be properly instructed, the testing

set mnist.test will be evaluated. The value of the accuracy obtained will tell you the

percentage of numbers read and correctly interpreted by the neural network.

Chapter 12 reCognizing handwritten digits

485

Extracting MNIST_data/train-images-idx3-ubyte.gz

Extracting MNIST_data/train-labels-idx1-ubyte.gz

Extracting MNIST_data/t10k-images-idx3-ubyte.gz

Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

Epoch: 0001 cost= 1.176361134

Epoch: 0002 cost= 0.662538510

Epoch: 0003 cost= 0.550689667

Epoch: 0004 cost= 0.496738935

Epoch: 0005 cost= 0.463713668

Epoch: 0006 cost= 0.440845339

Epoch: 0007 cost= 0.423968329

Epoch: 0008 cost= 0.410662182

Epoch: 0009 cost= 0.399876185

Epoch: 0010 cost= 0.390923975

Epoch: 0011 cost= 0.383305770

Epoch: 0012 cost= 0.376747700

Epoch: 0013 cost= 0.371062683

Epoch: 0014 cost= 0.365925885

Epoch: 0015 cost= 0.361331244

Epoch: 0016 cost= 0.357197133

Epoch: 0017 cost= 0.353523670

Epoch: 0018 cost= 0.350157993

Epoch: 0019 cost= 0.347037680

Epoch: 0020 cost= 0.344143576

Epoch: 0021 cost= 0.341464736

Epoch: 0022 cost= 0.338996708

Epoch: 0023 cost= 0.336639690

Epoch: 0024 cost= 0.334515039

Epoch: 0025 cost= 0.332482831

Training phase finished

Model accuracy: 0.9143

From the data obtained, and observing Figure 12-7, you can see that the learning

phase of the neural network has been completed and has an expected trend.

The accuracy value of 0.91 (91%) indicates that the model you chose works quite

satisfactorily (not completely).

Chapter 12 reCognizing handwritten digits

486

 Conclusions
In this short chapter, you learned how many application possibilities this data analysis

process has. It is not limited only to the analysis of numerical or textual data but also can

analyze images, such as the handwritten digits read by a camera or a scanner.

Furthermore, you have seen that predictive models can provide truly optimal

results thanks to machine learning and deep learning techniques, which are easily

implemented thanks to the scikit-learn library.

Figure 12-7. The cost trend during the learning phase of the neural network

Chapter 12 reCognizing handwritten digits

487
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_13

CHAPTER 13

Textual Data Analysis
with NLTK
In this book, you have seen various analysis techniques and numerous examples

that worked on data in numerical or tabular form, which is easily processed through

mathematical expressions and statistical techniques. But most of the data is composed

of text, which responds to grammatical rules (or sometimes not even that :)) that differ

from language to language. In text, the words and the meanings attributable to the words

(as well as the emotions they transmit) can be a very useful source of information.

In this chapter, you will learn about some text analysis techniques using the NLTK

(Natural Language Toolkit) library, which will allow you to perform otherwise complex

operations. Furthermore, the topics covered will help you understand this important

part of data analysis.

 Text Analysis Techniques
In recent years, with the advent of Big Data and the immense amount of textual data

coming from the Internet, a lot of text analysis techniques have been developed by

necessity. In fact, this form of data can be very difficult to analyze, but at the same time

represents a source of a lot of useful information, given also the enormous availability

of data. Just think of all the literature produced, the numerous posts published on the

Internet, for example. Comments on social networks and chats can also be a great

source of data, especially to understand the degree of approval or disapproval of a

particular topic.

488

Analyzing these texts has therefore become a source of enormous interest, and

there are many techniques that have been introduced for this purpose, creating a real

discipline in itself. Some of the more important techniques are the following:

• Analysis of the frequency distribution of words

• Pattern recognition

• Tagging

• Analysis of links and associations

• Sentiment analysis

 The Natural Language Toolkit (NLTK)
If you program in Python and want to analyze data in text form, one of the most

commonly used tools at the moment is the Python Natural Language Toolkit (NLTK).

NLTK is nothing more than a Python library (https://www.nltk.org/) in which

there are many tools specialized in processing and text data analysis. NLTK was created

in 2001 for educational purposes, then over time it developed to such an extent that it

became a real analysis tool.

Within the NLTK library, there is also a large collection of sample texts, called

corpora. This collection of texts is taken largely from literature and is very useful as

a basis for the application of the techniques developed with the NLTK library. In

particular, it’s used to perform tests (a role similar to the MNIST dataset present in

TensorFlow, which is discussed in Chapter 9).

Installing NLTK on your computer is a very simple operation. Being a very popular

Python library, you simply need to install it using pip or conda.

On Linux systems, use this:

pip install nltk

On Windows systems (via Anaconda), use this:

conda install nltk

Chapter 13 textual Data analysis with nltK

https://www.nltk.org/

489

 Import the NLTK Library and the NLTK Downloader Tool
In order to be more confident with NLTK, there is no better method than working

directly with the Python code. In this way you will be able to see and gradually

understand the operation of this library.

So the first thing you need to do is open a session on IPython or on a Jupyter

Notebook. The first command imports the NLTK library.

import nltk

Then you need to import text from the corpora collection. To do this there is a

function called nltk.download_shell(), which opens a tool called NLTK Downloader

that allows you to make selections through a guided choice of options.

If you enter this command on the terminal:

nltk.download_shell()

You will see the various options in text format.

NLTK Downloader

 d) Download l) List u) Update c) Config h) Help q) Quit

Downloader>

Now the tool is waiting for an option. If you want to see a list of possible NLTK

extensions, enter L for list and press Enter. You will immediately see a list of all the

possible packages belonging to NLTK that you can download to extend the functionality

of NLTK, including the texts of the corpora collection.

Packages:

 [] abc................. Australian Broadcasting Commission 2006

 [] alpino.............. Alpino Dutch Treebank

 [] averaged_perceptron_tagger Averaged Perceptron Tagger

 [] averaged_perceptron_tagger_ru Averaged Perceptron Tagger (Russian)

 [] basque_grammars..... Grammars for Basque

 [] biocreative_ppi..... BioCreAtIvE (Critical Assessment of Information

 Extraction Systems in Biology)

 [] bllip_wsj_no_aux.... BLLIP Parser: WSJ Model

Chapter 13 textual Data analysis with nltK

490

 [] book_grammars....... Grammars from NLTK Book

 [] brown............... Brown Corpus

 [] brown_tei........... Brown Corpus (TEI XML Version)

 [] cess_cat............ CESS-CAT Treebank

 [] cess_esp............ CESS-ESP Treebank

 [] chat80.............. Chat-80 Data Files

 [] city_database....... City Database

 [] cmudict............. The Carnegie Mellon Pronouncing Dictionary (0.6)

 [] comparative_sentences Comparative Sentence Dataset

 [] comtrans............ ComTrans Corpus Sample

 [] conll2000........... CONLL 2000 Chunking Corpus

 [] conll2002........... CONLL 2002 Named Entity Recognition Corpus

Hit Enter to continue:

Pressing Enter again will continue displaying the list by showing other packages in

alphabetical order. Press Enter until the list is finished to see all the possible packages. At

the end of the list, the different initial options of the NLTK Downloader will reappear.

To be able to create a series of examples to learn about the library, you need a series

of texts to work on. An excellent source of texts suitable for this purpose is the Gutenberg

corpus, present within the corpora collection. The Gutenberg corpus is a small selection

of texts extracted from the electronic archive called the Project Gutenberg (http://www.

gutenberg.org/). There are over 25,000 e-books in this archive.

To download this package, first enter the d option to download it. The tool will ask

you for the package name, so you then enter the name gutenberg.

 d) Download l) List u) Update c) Config h) Help q) Quit

Downloader> d

Download which package (l=list; x=cancel)?

 Identifier> gutenberg

At this point the package will start to download.

Chapter 13 textual Data analysis with nltK

http://www.gutenberg.org/
http://www.gutenberg.org/

491

For the following times, if you already know the name of the package you want to

download, just enter the command nltk.download() with the package name as an

argument. This will not open the NLTK Downloader tool, but will directly download the

required package. So the previous operation is equivalent to writing:

nltk.download ('gutenberg')

Once it’s completed you can see the contents of the package thanks to the fileids()

function, which shows the names of the files contained in it.

gb = nltk.corpus.gutenberg

print ("Gutenberg files:", gb.fileids ())

An array will appear on the terminal with all the text files contained in the gutenberg

package.

Gutenberg files : ['austen-emma.txt', 'austen-persuasion.txt', 'austen-

sense.txt', 'bible-kjv.txt', 'blake-poems.txt', 'bryant-stories.txt',

'burgess-busterbrown.txt', 'carroll-alice.txt', 'chesterton-ball.txt',

'chesterton-brown.txt', 'chesterton-thursday.txt', 'edgeworth-parents.txt',

'melville-moby_dick.txt', 'milton-paradise.txt', 'shakespeare-caesar.txt',

'shakespeare-hamlet.txt', 'shakespeare-macbeth.txt', 'whitman-leaves.txt']

To access the internal content of one of these files, you first select one, for example

Shakespeare's Macbeth (shakespeare-macbeth.txt), and then assign it to a variable

of convenience. An extraction mode is for words, that is, you want to create an array

containing words as elements. In this regard, you need to use the words() function.

macbeth = nltk.corpus.gutenberg.words ('shakespeare-macbeth.txt')

If you want to see the length of this text (in words), you can use the len() function.

len (macbeth)

23140

The text used for these examples is therefore composed of 23140 words.

The macbeth variable we created is a long array containing the words of the text.

For example, if you want to see the first 10 words of the text, you can write the following

command.

Chapter 13 textual Data analysis with nltK

492

macbeth [:10]

['[',

 'The',

 'Tragedie',

 'of',

 'Macbeth',

 'by',

 'William',

 'Shakespeare',

 '1603',

 ']']

As you can see, the first 10 words contain the title of the work, but also the square

brackets, which indicate the beginning and end of a sentence. If you had used the

sentence extraction mode with the sents() function, you would have obtained a more

structured array, with each sentence as an element. These elements, in turn, would be

arrays with words for elements.

macbeth_sents = nltk.corpus.gutenberg.sents ('shakespeare-macbeth.txt')

macbeth_sents [: 5]

[['[',

 'The',

 'Tragedie',

 'of',

 'Macbeth',

 'by',

 'William',

 'Shakespeare',

 '1603',

 ']'],

 ['Actus', 'Primus', '.'],

 ['Scoena', 'Prima', '.'],

 ['Thunder', 'and', 'Lightning', '.'],

 ['Enter', 'three', 'Witches', '.']]

Chapter 13 textual Data analysis with nltK

493

 Search for a Word with NLTK
One of the most basic things you need to do when you have an NLTK corpus (that is, an

array of words extracted from a text) is to do research inside it. The concept of research is

slightly different than what you are used to.

The concordance() function looks for all occurrences of a word passed as an

argument within a corpus.

The first time you run this command, the system will take several seconds to return

a result. The subsequent times will be faster. In fact, the first time this command is

executed on a corpus it creates an indexing of the content to perform the search, which

once created will be used in subsequent calls. This explains why the system takes more

time the first time.

First, make sure that the corpus is an object nltk.Text, and then search internally

for the word 'Stage'.

text = nltk.Text(macbeth)

text.concordance('Stage')

Displaying 3 of 3 matches:

nts with Dishes and Seruice ouer the Stage . Then enter Macbeth Macb . If

it we

with mans Act , Threatens his bloody Stage : byth ' Clock ' tis Day , And

yet d

 struts and frets his houre vpon the Stage , And then is heard no more . It

is

You have obtained three different occurrences of the text.

Another form of searching for a word present in NLTK is that of context. That is, the

previous word and the next word to the one you are looking for. To do this, you must use

the common_contexts() function.

text.common_contexts(['Stage'])

the_ bloody_: the_,

If you look at the results of the previous research, you can see that the three results

correspond to what has been said.

Once you understand how NLTK conceives the concept of the word and its context

during the search, it will be easy to understand the concept of a synonym. That is, it

is assumed that all words that have the same context can be possible synonyms. To

Chapter 13 textual Data analysis with nltK

494

search for all words that have the same context as the searched one, you must use the

similar() function.

text.similar('Stage')

fogge ayre bleeding reuolt good shew heeles skie other sea feare

consequence heart braine seruice herbenger lady round deed doore

These methods of research may seem rather strange for those who are not used

to processing and analyzing text, but you will soon understand that these methods of

 research are perfectly suited to the words and their meaning in relation to the text in

which they are present.

 Analyze the Frequency of Words
One of the simplest and most basic examples for the analysis of a text is to calculate the

frequency of the words contained in it. This operation is so common that it has been

incorporated into a single nltk.FreqDist() function to which the variable containing

the word array is passed as an argument.

So to get a statistical distribution of all the words in the text, you'll have to enter a

simple command.

fd = nltk.FreqDist(macbeth)

If you want to see the first 10 most common words in the text, you can use the

most_common() function.

fd.most_common(10)

[(',', 1962),

 ('.', 1235),

 ("'", 637),

 ('the', 531),

 (':', 477),

 ('and', 376),

 ('I', 333),

 ('of', 315),

 ('to', 311),

 ('?', 241)]

Chapter 13 textual Data analysis with nltK

495

From the result obtained, you can see that the most common elements are

punctuation, prepositions, and articles, and this applies to many languages, including

English. Since these have little meaning during text analysis, it is often necessary to

eliminate them. These are called stopwords.

Stopwords are words that have little meaning in the analysis and must be filtered.

There is no general rule to determine whether a word is a stopword (to be deleted) or

not. However, the NLTK library comes to the rescue by providing you with an array of

pre-selected stopwords. To download stopwords, you can use the nltk.download()

command.

nltk.download('stopwords')

Once you have downloaded all the stopwords, you can select only those related to

English, saving them in a variable sw.

sw = set(nltk.corpus.stopwords.words ('english'))

print(len(sw))

list(sw) [:10]

179

['through',

 'are',

 'than',

 'nor',

 'ain',

 "didn't",

 'didn',

 "shan't",

 'down',

 'our']

There are 179 stopwords in the English vocabulary according to NLTK. Now you can

use these stopwords to filter the macbeth variable.

macbeth_filtered = [w for w in macbeth if w.lower() not in sw]

fd = nltk.FreqDist (macbeth_filtered)

fd.most_common(10)

[(',', 1962),

Chapter 13 textual Data analysis with nltK

496

 ('.', 1235),

 ("'", 637),

 (':', 477),

 ('?', 241),

 ('Macb', 137),

 ('haue', 117),

 ('-', 100),

 ('Enter', 80),

 ('thou', 63)]

Now that the first 10 most common words are returned, you can see that the

stopwords have been eliminated, but the result is still not satisfactory. In fact,

punctuation is still present in the words. To eliminate all punctuation, you can change

the previous code by inserting in the filter an array of punctuation containing the

punctuation symbols. This punctuation array can be obtained by importing the string

function.

import string

punctuation = set (string.punctuation)

macbeth_filtered2 = [w.lower () for w in macbeth if w.lower () not in sw

and w.lower () not in punctuation]

Now you can recalculate the frequency distribution of words.

fd = nltk.FreqDist (macbeth_filtered2)

fd.most_common(10)

[('macb', 137),

 ('haue', 122),

 ('thou', 90),

 ('enter', 81),

 ('shall', 68),

 ('macbeth', 62),

 ('vpon', 62),

 ('thee', 61),

 ('macd', 58),

 ('vs', 57)]

Finally, the result is what you were looking for.

Chapter 13 textual Data analysis with nltK

497

 Selection of Words from Text
Another form of processing and data analysis is the process of selecting words contained

in a body of text based on particular characteristics. For example, you might be

interested in extracting words based on their length.

To get all the longest words, for example words that are longer than 12 characters,

you enter the following command.

long_words = [w for w in macbeth if len(w)> 12]

All words longer than 12 characters have been entered in the long_words variable.

You can list them in alphabetical order by using the sort() function.

sorted(long_words)

['Assassination',

 'Chamberlaines',

 'Distinguishes',

 'Gallowgrosses',

 'Metaphysicall',

 'Northumberland',

 'Voluptuousnesse',

 'commendations',

 'multitudinous',

 'supernaturall',

 'vnaccompanied']

As you can see, there are 11 words that meet this criteria.

Another example is to look for all the words that contain a certain sequence of

characters, such as 'ious'. You only have to change the condition in the for in loop to

get the desired selection.

ious_words = [w for w in macbeth if 'ious' in w]

ious_words = set(ious_words)

sorted(ious_words)

['Auaricious',

 'Gracious',

 'Industrious',

 'Iudicious',

Chapter 13 textual Data analysis with nltK

498

 'Luxurious',

 'Malicious',

 'Obliuious',

 'Pious',

 'Rebellious',

 'compunctious',

 'furious',

 'gracious',

 'pernicious',

 'pernitious',

 'pious',

 'precious',

 'rebellious',

 'sacrilegious',

 'serious',

 'spacious',

 'tedious']

In this case, you used sort() to make a list casting, so that it did not contain

duplicate words.

These two examples are just a starting point to show you the potential of this tool and

the ease with which you can filter words.

 Bigrams and Collocations
Another basic element of text analysis is to consider pairs of words (bigrams) instead

of single words. The words “is” and “yellow” are for example a bigram, since their

combination is possible and meaningful. So “is yellow” can be found in textual data. We

all know that some of these bigrams are so common in our literature that they are almost

always used together. Examples include “fast food”, “pay attention”, “good morning”, and

so on. These bigrams are called collocations.

Textual analysis can also involve the search for any bigrams within the text under

examination. To find them, simply use the bigrams() function. In order to exclude

stopwords and punctuation from the bigrams, you must use the set of words already

filtered previously, such as macbeth_filtered2.

Chapter 13 textual Data analysis with nltK

499

bgrms = nltk.FreqDist(nltk.bigrams(macbeth_filtered2))

bgrms.most_common(15)

[(('enter', 'macbeth'), 16),

 (('exeunt', 'scena'), 15),

 (('thane', 'cawdor'), 13),

 (('knock', 'knock'), 10),

 (('st', 'thou'), 9),

 (('thou', 'art'), 9),

 (('lord', 'macb'), 9),

 (('haue', 'done'), 8),

 (('macb', 'haue'), 8),

 (('good', 'lord'), 8),

 (('let', 'vs'), 7),

 (('enter', 'lady'), 7),

 (('wee', 'l'), 7),

 (('would', 'st'), 6),

 (('macbeth', 'macb'), 6)]

By displaying the most common bigrams in the text, linguistic locations can be found.

In addition to the bigrams, there can also be placements based on trigrams, which

are combinations of three words. In this case, the trigrams() function is used.

tgrms = nltk.FreqDist(nltk.trigrams (macbeth_filtered2))

tgrms.most_common(10)

[(('knock', 'knock', 'knock'), 6),

 (('enter', 'macbeth', 'macb'), 5),

 (('enter', 'three', 'witches'), 4),

 (('exeunt', 'scena', 'secunda'), 4),

 (('good', 'lord', 'macb'), 4),

 (('three', 'witches', '1'), 3),

 (('exeunt', 'scena', 'tertia'), 3),

 (('thunder', 'enter', 'three'), 3),

 (('exeunt', 'scena', 'quarta'), 3),

 (('scena', 'prima', 'enter'), 3)]

Chapter 13 textual Data analysis with nltK

500

 Use Text on the Network
So far you have seen a series of examples that use already ordered and included text

(called a corpus) within the NLTK library as gutenberg. But in reality, you will need to

access the Internet to extract the text and collect it as a corpus to be used for analysis

with NLTK.

In this section, you will see how simple this kind of operation is. First, you need to

import a library that allows you to connect to the contents of web pages. The urllib

library is an excellent candidate for this purpose, as it allows you to download the text

content from the Internet, including HTML pages.

So first you import the request() function, which specializes in this kind of

operation, from the urllib library.

from urllib import request

Then you have to write the URL of the page that contains the text to be extracted.

Still referring to the gutenberg project, you can choose, for example, a book written by

Dostoevsky (http://www.gutenberg.org). On the site there is text in different formats; at

this point we will choose the one in the raw format (.txt).

url = "http://www.gutenberg.org/files/2554/2554-0.txt"

response = request.urlopen(url)

raw = response.read().decode('utf8')

Within the raw text is all the textual content of the book, downloaded from the

Internet. Always check the contents of what you have downloaded. To do this, the first 75

characters are enough.

raw[:75]

'\ufeffThe Project Gutenberg EBook of Crime and Punishment, by Fyodor

Dostoevsky\r'

As you can see, these characters correspond to the title of the text. We see that

there is also an error in the first word of the text. In fact there is the Unicode character

BOM \ufeff. This happened because we used the utf8 decoding system, which is valid

in most cases, but not in this case. The most suitable system in this case is utf-8-sig.

Replace the incorrect value with the correct one.

Chapter 13 textual Data analysis with nltK

http://www.gutenberg.org

501

raw = response.read().decode('utf8-sig')

raw[:75]

'The Project Gutenberg EBook of Crime and Punishment, by Fyodor Dostoevsky\

r\n'

Now to be able to work on it, you have to convert it into a corpus compatible with

NLTK. To do this, enter the following conversion commands.

tokens = nltk.word_tokenize (raw)

webtext = nltk.Text (tokens)

These commands do nothing more than split into tokens (that is, words) the

character text with the function nltk.word_tokenize() and then convert tokens into a

textual body suitable for NLTK with nltk.Text().

You can see the title by entering this command

webtext[:12]

['The',

 'Project',

 'Gutenberg',

 'EBook',

 'of',

 'Crime',

 'and',

 'Punishment',

 ',',

 'by',

 'Fyodor',

 'Dostoevsky']

Now you have a correct corpus on which to begin to carry out your analysis.

 Extract the Text from the HTML Pages
In the previous example, you created a NLTK corpus from text downloaded from the

Internet. But most of the documentation on the Internet is in the form of HTML pages.

In this section, you will see how to extract text from HTML pages.

Chapter 13 textual Data analysis with nltK

502

You always use the request() function of the urllib library to download the HTML

content of a web page.

url = "http://news.bbc.co.uk/2/hi/health/2284783.stm"

html = request.urlopen(url).read().decode('utf8')

html[:120]

'<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN"

"http://www.w3.org/TR/REC-html40/loose.dtd">\r\n<html>\r\n<hea'

Now, however, the conversion into NLTK corpus requires an additional library, bs4

(BeautifulSoup), which provides you with suitable parsers that can recognize HTML

tags and extract the text contained in them.

from bs4 import BeautifulSoup

raw = BeautifulSoup(html, "lxml").get_text()

tokens = nltk.word_tokenize(raw)

text = nltk.Text(tokens)

Now you also have a corpus in this case, even if you often have to perform more

complex cleaning operations than the previous case to eliminate the words that do not

interest you.

 Sentimental Analysis
Sentimental analysis is a new field of research that has developed very recently in

order to evaluate people’s opinions about a particular topic. This discipline is based

on different techniques that use text analysis and its field of work in the world of social

media and forums (opinion mining).

Thanks to comments and reviews by users, sentimental analysis algorithms can

evaluate the degree of appreciation or evaluation based on certain keywords. This

degree of appreciation is called opinion and has three possible values: positive, neutral,

or negative. The assessment of this opinion thus becomes a form of classification.

So many sentimental analysis techniques are actually classification algorithms

similar to those you saw in previous chapters covering machine learning and deep

learning (see Chapters 8 and 9).

Chapter 13 textual Data analysis with nltK

503

As an example to better understand this methodology, we reference a classification

tutorial using the Naïve Bayes algorithm on the official website (https://www.nltk.org/

book/ch06.html), where it is possible to find many other very useful examples to better

understand this library.

As a training set, this example uses another corpus present in NLTK, which is very

useful for these types of classification problems: movie_reviews. This corpus contains

numerous film reviews in which there is text of a discrete length together with another

field that specifies whether the criticism is positive or negative. Therefore, it serves as

great learning material.

The purpose of this tutorial is to find the words that recur most in negative

documents, or words that recur more in positive ones, so as to focus on the keywords

related to an opinion. This evaluation will be carried out through a Naïve Bayes

Classification integrated into NLTK.

First of all, the corpus called movie_reviews is important.

nltk.download('movie_reviews')

Then you build the training set from the corpus obtained, creating an array of

element pairs called documents. This array contains in the first field the text of the single

review, and in the second field the negative or positive evaluation. At the end, you will

mix all the elements of the array in random order.

import random

reviews = nltk.corpus.movie_reviews

documents = [(list(reviews.words(fileid)), category)

 for category in reviews.categories()

 for fileid in reviews.fileids(category)]

random.shuffle(documents)

To better understand, see the contents of documents in detail. The first element

contains two fields; the first is the review containing all the words used.

first_review = ' '.join(documents[0][0])

print(first_review)

topless women talk about their lives falls into that category that i

mentioned in the devil ' s advocate : movies that have a brilliant beginning

but don ' t know how to end . it begins by introducing us to a selection of

Chapter 13 textual Data analysis with nltK

https://www.nltk.org/book/ch06.html
https://www.nltk.org/book/ch06.html

504

characters who all know each other . there is liz , who oversleeps and so is

running late for her appointment , prue who is getting married ,...

The second field instead contains the evaluation of the review:

documents[0][1]

'neg'

But the training set is not yet ready; in fact you have to create a frequency

distribution of all the words in the corpus. This distribution will be converted into a

casting list with the list() function.

all_words = nltk.FreqDist(w.lower() for w in reviews.words())

word_features = list(all_words)

Then the next step is to define a function for the calculation of the features, i.e.,

words that are important enough to establish the opinion of a review.

def document_features(document, word_features):

 document_words = set(document)

 features = {}

 for word in word_features:

 features ['{}'.format(word)] = (word in document_words)

 return features

Once you have defined the document_features() function, you can create feature

sets from documents.

featuresets = [(document_features (d, c)) for (d, c) in documents]

The aim is to create a set of all the words contained in the whole movie corpus,

analyze whether they are present (True or False) in each single review, and see how

much they contribute to the positive or negative judgment of it. The more often a word

is present in the negative reviews and the less often it’s present in the positive ones, the

more it’s evaluated as a “bad” word. The opposite is true for a “good” word evaluation.

To determine how to subdivide this feature set for the training set and the testing set,

you must first see how many elements it contains.

len (featuresets)

2000

Chapter 13 textual Data analysis with nltK

505

Then you use the first 1,500 elements of the set for the training set, and the last 500

items for the testing set, in order to evaluate the accuracy of the model.

train_set, test_set = featuresets[1500:], featuresets[: 500]

Finally, you apply the Naïve Bayes classifier provided by the NLTK library to classify

this problem. Then you calculate its accuracy, submitting the test set to the model.

classifier = nltk.NaiveBayesClassifier.train(train_set)

print (nltk.classify.accuracy(classifier, test_set))

0.85

The accuracy is not as high as in the examples from the previous chapters, but we are

working with words contained in text, and therefore it is very difficult to create accurate

models relative to numerical problems.

Now that you have completed the analysis, you can see which words have the most

weight in evaluating the negative or positive opinion of a review.

classifier.show_most_informative_features(10)

Most Informative Features

 badly = True neg : pos = 11.1 : 1.0

 julie = True neg : pos = 9.5 : 1.0

 finest = True pos : neg = 9.0 : 1.0

 forgot = True neg : pos = 8.8 : 1.0

 naked = True neg : pos = 8.8 : 1.0

 refreshing = True pos : neg = 7.9 : 1.0

 stolen = True pos : neg = 7.3 : 1.0

 luckily = True pos : neg = 7.3 : 1.0

 directs = True pos : neg = 7.3 : 1.0

 rain = True neg : pos = 7.3 : 1.0

Looking at the results, you will not be surprised to find that the word “badly” is a bad

opinion word and that “finest” is a good opinion word. The interesting thing here is that

“julie” is a bad opinion word.

Chapter 13 textual Data analysis with nltK

506

 Conclusions
In this chapter, you took a small glimpse of the text analysis world. In fact, there are many

other techniques and examples that could be discussed. However, at the end of this

chapter, you should be familiar with this branch of analysis and especially have begun to

learn about the NLTK (Natural Language Toolkit) library, a powerful tool for text analysis.

Chapter 13 textual Data analysis with nltK

507
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_14

CHAPTER 14

Image Analysis
and Computer Vision
with OpenCV
In the previous chapters, the analysis of data was centered entirely on numerical and

tabulated data, while in the previous one we saw how to process and analyze data in

textual form. This book rightfully closes by introducing the last aspect of data analysis:

image analysis.

During the chapter, topics such as computer vision and face recognition will be

introduced. You will see how the techniques of deep learning are at the base of this king

of analysis. Furthermore, another library will be introduced, called openCV, which has

always been the reference point for image analysis.

 Image Analysis and Computer Vision
Throughout the book, you have seen how the purpose of the analysis is to extract

new information, to draw new concepts and characteristics from a system under

investigation. You did it with numerical and textual data, but the same can be done

with images.

This branch of analysis is called image analysis and is based on some calculation

techniques applied to them (image filters), which you will see in the next sections.

In recent years, especially because of the development of deep learning, image

analysis has experienced huge development in solving problems that were previously

impossible, giving rise to a new discipline called computer vision.

508

In Chapter 9, you learned about artificial intelligence, which is the branch of

calculation that deals with solving problems of pure “human relevance”. Computer

vision is part of this, since its purpose is to reproduce the way the human brain perceives

images.

In fact, seeing is not just the acquisition of a two-dimensional image, but above all

it is the interpretation of the content of that area. The captured image is decomposed

and elaborated into levels of representation that are gradually more abstract (contours,

figures, objects, and words) and therefore recognizable by the human mind.

In the same way, computer vision intends to process a two-dimensional image and

extract the same levels of representation from it. This is done through various operations

that can be classified as follows:

• Detection: Detect shapes, objects, or other subjects of investigation in

an image (for example finding cars)

• Recognition: The identified subjects are then led back to generic

classes (for example, subdividing cars by brands and types)

• Identification: An instance of the previous class is identified

(for example, find my car)

 OpenCV and Python
OpenCV (Open Source Computer Vision) is a library written in C ++ that is specialized

for computer vision and image analysis (https://opencv.org/). This powerful library,

designed by Gary Bradsky, was born as an Intel project and in 2000 the first version was

released. Then with the passage of time, it was released under an open source license,

and since then has gradually becoming more widespread, reaching the version 3.3

(2017). At this time, OpenCV supports many algorithms related to computer vision and

machine learning and is expanding day by day.

Its usefulness and spread is due precisely to its antagonist: MATLAB. In fact, those

who need to work with image analysis can follow only two ways: purchase MATLAB

packages or compile and install the open source version of OpenCV. Well, it is easy to see

why many have opted for the second choice.

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

https://opencv.org/

509

 OpenCV and Deep Learning
There is a close relationship between computer vision and deep learning. Since 2017

was a significant year for the development of deep learning (read my article about

it at http://www.meccanismocomplesso.org/en/2017-year-of-deep-learning-

frameworks/), the release of the new version of OpenCV 3.3 has seen the enhancement

of the library with many new features of deep learning and neural networks in general.

In fact, the library has a module called dnn (deep neural networks) dedicated to this

aspect. This module has been specifically developed for use with many deep learning

frameworks, including Caffe2, TensorFlow, and PyTorch (for information on these

frameworks see Chapter 9).

 Installing OpenCV
Installing a OpenCV package on many operating systems (Windows, iOS, and Android)

is done through the official website (https://opencv.org/releases.html).

If you use Anaconda as a distribution medium, I recommend using this approach.

The installation is very simple and clean.

conda install opencv

Unfortunately for Linux systems there is no official PyPI package (with pip to be

clear) to be installed. Manual installation is required and may vary depending on the

distribution and version used. Many procedures are present on the Internet, some

more or less valid. For those with Ubuntu 16, I recommend this installation procedure

(see https://github.com/BVLC/caffe/wiki/OpenCV-3.3-Installation-Guide-on-

Ubuntu- 16.04).

 First Approaches to Image Processing and Analysis
In this section, you will begin to familiarize yourself with the OpenCV library. First

you will start to see how to upload and view images. Then you will pass some simple

operations to them, add and subtract two images, and see an example of image blending.

All these operations will be very useful as they will serve as a basis for any other image

analysis operation.

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

http://www.meccanismocomplesso.org/en/2017-year-of-deep-learning-frameworks/
http://www.meccanismocomplesso.org/en/2017-year-of-deep-learning-frameworks/
https://opencv.org/releases.html
https://github.com/BVLC/caffe/wiki/OpenCV-3.3-Installation-Guide-on-Ubuntu-16.04
https://github.com/BVLC/caffe/wiki/OpenCV-3.3-Installation-Guide-on-Ubuntu-16.04

510

 Before Starting
Once the OpenCV library is installed, you can open an IPython session on the Jupyter

QtConsole or Jupyter Notebook.

Then before you start programming, you need to import the openCV library.

import numpy as np

import cv2

 Load and Display an Image
First, mainly because OpenCV works on pictures, it is important to know how to

load them in a program in Python, manipulate them again, and finally view them to see

the results.

The first thing you need to do is read the file containing the image using the OpenCV

library. You can do this using the imread() method. This method reads the file in a

compressed format such as JPG and translates it into a data structure that’s made of a

numerical matrix corresponding to color gradations and position.

Note you can find the images and files in the source code of this book.

img = cv2.imread('italy2018.jpg')

If you are interested in more details, you can see the content of an image directly.

You will notice an array of arrays, each corresponding to a specific position of the image,

and each characterized by numbers between 0 and 255.

In fact, if you see the content of the first element of the image, you will get the

following.

img[0]

array([[38, 43, 11],

 [37, 42, 10],

 [36, 41, 9],

 ...,

 [24, 37, 15],

 [22, 36, 12],

 [23, 36, 12]], dtype=uint8)

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

511

Continuing with the code, you will now use the imshow() method to create a window

with the image loaded in the variable img. This method takes two parameters—the

window name and the image variable. Once you have created the window, you can use

the waitKey() method.

cv2.imshow('Image', img)

cv2.waitKey(0)

Executing this command, a new window opens and shows the image, as shown in

Figure 14-1.

The waitKey() method starts to display the window and allows you to control the

waiting time of the program before continuing with the next command. This example

used 0 as an argument, which means that the wait will be infinite as long as you press

any key on the keyboard.

Figure 14-1. The photo of the Italian national football team during training

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

512

If you wanted to keep open the window only for a specific period, you need to write

the number of milliseconds as a parameter. Try to replace the value in the program, for

example 2000 (two seconds), and run the program.

Note this behavior can vary greatly from system to system. sometimes the
Ipython kernel could give problems. then use waitKey(0).

cv2.imshow('Image', img)

cv2.waitKey(2000)

The window with the image (as shown in Figure 14-1) should appear and then

disappear after two seconds.

However, for examples that are more complex, it is useful to have direct control over

the closure of a window, without the use of waiting times. The destroyWindow() method

allows you to close the desired window (could be several open) by specifying as an

argument the name of the window, which in your case is Image.

cv2.imshow('Image', img)

cv2.waitKey(2000)

cv2.destroyWindow('Image')

If there are multiple windows open and you want to close them all at once, you can

use a single command, the call to destroyAllWindows() method.

 Working with Images
Now that you’ve seen how to view existing images in your file system, you can proceed

to the next step: processing the image by performing an operation on it and saving the

result to a new file.

Continuing with the previous example, you will use the same code. This time,

however, you will perform a simple image manipulation, for example, by decomposing

the three RGB channels. Then you will exchange the channels to form a new image. This

new image will have all altered colors.

After loading the image, decompose it into the three RGB channels. You can do this

easily by using the split() method.

b,r,g = cv2.split(img)

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

513

Now reassemble the three channels, but change the order, for example by

exchanging the red channel with the green channel. You can easily recombine the

channels using the merge() method.

img2 = cv2.merge((b,g,r))

The new image is contained in the img2 variable. Display it along with the original in

a new window.

cv2.imshow('Image2', img2)

cv2.waitKey(0)

By running the program, a new window appears with altered colors (as shown in

Figure 14-2).

Figure 14-2. The processed image has altered colors

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

514

 Save the New Image
Finally you have to save your new image by saving the file system.

At the end of the program, add an imwrite() method with the name of the new file

that you want to save, which can also be of another format, such as PNG.

cv2.imwrite('italy2018altered.png', img2)

Execute this command and you will notice a new italy2018altered.png file in the

workspace.

 Elementary Operations on Images
The most basic operation is the addition of two images. With the openCV library, this

operation is very simple and you can do it using the cv2.add() function. The result

obtained will be the combination of the two images.

But do not forget that the two images must have the same dimensions to be added

together. In this case, the images are both 512x331 pixels.

The first thing you need to do is load a second image with the same dimensions, in

our case soccer.jpg (you can find it in the source code).

img2 = cv2.imread('soccer.jpg')

cv2.imshow('Image2', img2)

cv2.waitKey(0)

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

515

By executing the code, you will get the image shown in Figure 14-3.

Now you just have to add the two images using the add() function.

img = cv2.add(img,img2)

cv2.imshow('Sum',img)

By executing this code, you will receive a combination of the two images (as shown

in Figure 14-4). Unfortunately, the effect is not very appealing.

Figure 14-3. A new image that’s the same size (512x331 pixels)

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

516

The result is not what we expected. The prevalence of white is in fact the result of

the simple arithmetic sum of the three RGB values, which is calculated for each

individual pixel.

In fact, you know that each of the three RGB components takes values from 0 to 255.

Therefore, if the sum of the values of a given pixel is greater than 255 (which is quite

likely) the value will still be 255. Therefore, the simple task of adding the images does not

lead to an image that’s a merger of the two, but instead shifts gradually more and more

toward white.

Later you will see how the concept of adding two images to create a new image that is

half of the two (it is not the arithmetic sum).

Figure 14-4. A new image obtained by adding the two images

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

517

You can do the same thing by subtracting two images. This operation can be

performed with the cv2.subtract() function. This time we would expect an image that

will tend more and more toward the black. Replace the cv2.add() function with the

following.

img3 = cv2.subtract(img, img2)

cv2.imshow('Sub1',img3)

cv2.waitKey(0)

By running the program you will find a picture tending to the darkness (even if you

do not see much), as shown in Figure 14-5.

Figure 14-5. A new image obtained by subtracting one image from another

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

518

Please note that this effect is even worse if you do the reverse.

img3 = cv2.subtract(img2, img)

cv2.imshow('Sub1',img3)

cv2.waitKey(0)

You get a blackish image, as shown in Figure 14-6.

However, this is useful to know that the order of the operators is important

for the result.

More concretely, you have already seen that an image object created with the OpenCV

library is nothing more than an array of arrays that respond perfectly to the canons of

NumPy. Thus, you can use the operations between matrices provided by NumPy, such as

the addition of matrices. But be careful, the result will certainly not be the same.

img = img1 + img2

Figure 14-6. A new image obtained by subtracting one image from another

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

519

In fact, the cv2.add() and cv2.subtract() functions maintain the values between

0 and 255, regardless of the value of the operators. If the sum exceeds 255 the result is

interpreted differently, thus creating a very strange color effect (maybe as a module of

255). The same thing happens when the removal produces a negative value; the result

would be 0. Arithmetic operations do not have this feature.

However, you can try it directly.

img3 = img + img2

cv2.imshow('numpy',img3)

cv2.waitKey(0)

Executing it, you will get an image with a very strong color contrast (they are the

points over 255), as shown in Figure 14-7.

Figure 14-7. An image obtained by adding two images as two NumPy
matrices

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

520

 Image Blending
In the previous example, you saw that the addition or subtraction of two images does

not produce an intermediate image between the two, but instead changes the coloration

toward whites or blacks.

The correct operation is called blending. That is, you can consider the operation

of superimposing the two images, one above the other, making the one placed above

gradually more and more transparent. By adjusting the transparency gradually, you get a

mixture of the two images, creating a new one that is the intermediate.

The blending operation does not correspond to a simple addition, but the formula

corresponds to the following equation.

img = α · img1 + (1 – α) · img2 with 0 ≥ α ≥ 1

As you can see from the previous equation, the two images have two numerical

coefficients that take values between 0 and 1. With the growth of the α parameter you will

have a smooth transition from the first image to the second.

The OpenCV library provides the operation of blending with the cv2.addWeighted()

function.

Therefore, if you want to create an intermediate image between two source images,

you can use the following code.

img3 = cv2.addWeighted(img, 0.3, img2, 0.7, 0)

cv2.imshow('numpy',img3)

cv2.waitKey(0)

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

521

Figure 14-8. An image obtained with image blending

The result will be an image like the one shown in Figure 14-8.

 Image Analysis
The purpose of the examples in the previous section was to understand that images

are nothing but NumPy arrays. As such, these numerical matrices can be processed.

Therefore, you can implement many mathematical functions that will process the

numbers within these matrices to get new images. These new images, obtained from

operations, will serve to provide new information.

This is the concept underlying image analysis. The mathematical operations carried

out by a starting image (matrix) to a resultant image (matrix) are called image filters

(see Figure 14-9). To help you understand this process, you will certainly have to deal

with photo editing applications (like Photoshop). In any case, you have certainly seen

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

522

that filters that can be applied to photos. These filters are nothing more than algorithms

(sequences of mathematical operations) that modify the numerical values in the matrix

of the starting image.

 Edge Detection and Image Gradient Analysis
In the previous sections, you saw how to perform some basic operations that are useful

for image analysis. In this section, you start with a real case of image analysis, called edge

detection.

 Edge Detection
While analyzing an image, and especially during computer vision, one of the

fundamental operations is to understand the content of the image, such as objects

and people. It is necessary first to understand what possible forms are represented in

the image. Nevertheless, to understand the geometries represented, it is necessary to

recognize the outlines that delimit an object from the background or from other objects.

This is precisely the task of the edge detection.

Figure 14-9. A representation of the image filters that are the basis of image
analysis

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

523

In edge detection, a great many algorithms and techniques have been developed and

they exploit different principles in order to determine the contours of objects correctly.

Many of these techniques are based on the principle of color gradients, and exploit the

image gradient analysis process.

 The Image Gradient Theory
Among the various operations that can be applied to images, there are the convolutions

of an image in which certain filters are applied to edit the image in order to obtain

information or some other utility. You have already seen that an image is represented as

a large numerical matrix in which the colors of each pixel are represented by a number

from 0 to 255 in the matrix. The convolutions process all these numerical values by

applying a mathematical operation (image filter) to produce new values in a new matrix

of the same size.

One of these operations is the derivative. In simple words, the derivative is a

mathematical operation that allows you to get the numerical values indicating the speed

at which a value changes (in space, time, etc.).

How could the derivative be important in the case of the images? It has to do with

color variation, called a gradient.

Being able to calculate the gradient of a color is an excellent tool to calculate the

edges of an image. In fact, your eye can distinguish the outlines of a figure present in

an image, thanks to the jumps between one color to another. In addition, your eye can

perceive the depths thanks to the various shades of color ranging from light to dark,

which is the gradient.

From all this, it is quite clear that measuring a gradient in an image is crucial to being

able to detect the edges of the image. It’s done with a simple operation (filter) that is

carried out on the image.

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

524

To get a better look at it from a mathematical point of view, look at Figure 14-10.

As you can see in Figure 14-10, an edge is no more than a quick transition from one

hue to another. To simplify, 0 is black and 1 is white. All shades of gray are floating values

between 0 and 1.

If you chart all corresponding values to the gradient values, you get the function f().

As you can see, there is a sudden transition from 0 to 1, which indicates the edge.

Figure 14-10. The image gradient theory representation

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

525

The derivative of the function f() results in the function f'(). As you can see, the

maximum variation of the hue leads to values close to 1. So when converting colors, you

will get a figure in which white will indicate the edge.

 A Practical Example of Edge Detection with the Image
Gradient Analysis
Moving on to the practical part, you will use two images created specifically to test the

analysis of the contours, since they have several important characteristics in them.

The first image (as shown in Figure 14-11) consists of two arrows in black and white

and corresponds to the blackandwhite.jpg file. In this image, the color contrast is very

strong and the contours of the arrows have all the possible orientations (horizontal,

vertical, and diagonal). This test image will serve to evaluate the effect of edge detection

in a black and white system.

The second image, gradients.jpg, shows different gradients of gray, which, when

placed next to each other, create rectangles whose edges have all the possible gradations

and combinations of shades (as shown in Figure 14-12). This image is a good test to

evaluate the true edge detection capabilities of the system.

Figure 14-11. A black and white image representing two arrows

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

526

Now you can start to develop the code needed for edge detection. You will use

matplotlib to display different images in the same window. In this test, we will use two

different types of image filters provided by opencv: sobel and laplacian. In fact, their

names correspond to the name of the mathematical operations performed on the

matrices (images). The openCV library provides cv2.Sobel() and cv2.Laplacian() to

apply these two calculations.

First it starts by analyzing the edge detection applied to the blackandwhite.jpg image.

from matplotlib import pyplot as plt

%matplotlib inline

img = cv2.imread('blackandwhite.jpg',0)

laplacian = cv2.Laplacian(img, cv2.CV_64F)

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)

sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)

plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')

plt.title('Original'), plt.xticks([]), plt.yticks([])

plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')

plt.title('Laplacian'), plt.xticks([]), plt.yticks([])

plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')

plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])

Figure 14-12. A set of gray gradients placed next to each other

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

527

plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')

plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])

plt.show()

When you run this code, you get a window with four boxes (as shown in

Figure 14- 13). The first box is the original image in black and white, while the other three

are the result of the three filters applied to the image.

In regards to the Sobel filters, edge detection is perfect, even if limited horizontally

or vertically. The diagonal lines are visible in both cases, since they have both horizontal

and vertical components, but the horizontal edges in the Sobel X and those in the

vertical Sobel Y are not detected in any way.

Combining the two filters (the calculation of two derivatives) to obtain the Laplacian

filter, the determination of the edges is omnidirectional but has some loss of resolution.

In fact, you can see that the ripples corresponding to the edges are more subdued.

Figure 14-13. The result from the edge detection applied to the blackandwhite.jpg
image

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

528

The coloring in gray is very useful for detecting edges and gradients, but if you are

interested in only detecting edges, you have to set as output an image file in cv2.CV_8U.

Therefore, you can change the type of output data from cv2.CV_64F to cv2.CV_8U in

the filters function of the previous code. Replace the arguments passed to the two image

filters as follows.

laplacian = cv2.Laplacian(img, cv2.CV_8U)

sobelx = cv2.Sobel(img,cv2.CV_8U,1,0,ksize=5)

sobely = cv2.Sobel(img,cv2.CV_8U,0,1,ksize=5)

By running the code, you will get similar results (as shown in Figure 14-14), but

this time only in black and white, where the edges are displayed in white on a black

background.

Figure 14-14. The result from the edge detection applied to the blackandwhite.jpg
image

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

529

But if you look carefully at the panels of the Sobel filter X and Y, you will

notice right away that something is wrong. Where are the missing edges? Note this issue

in Figure 14- 15.

In fact, there was a problem while converting the data. The gradients reported in

the grayscale with cv2.CV_64F values are represented by positive values (positive slope)

when changing from black to white. However, they are represented by negative values

(negative slope) when switching from white to black. In the conversion from cv2.CV_64F

to cv2.CV_8U, all negative slopes are reduced to 0, and then the information relating to

those edges is lost. When the program will display the image, the edges from white to

black will not be shown.

To overcome this, you should keep the data in the output of the filter in cv2.CV_64F

(instead of cv2.CV_8U), then calculate the absolute value, and finally do the conversion

in cv2.CV_8U.

Figure 14-15. Missing edges in the blackandwhite.jpg image

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

530

Make these changes to the code.

laplacian64 = cv2.Laplacian(img, cv2.CV_64F)

sobelx64 = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)

sobely64 = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)

laplacian = np.uint8(np.absolute(laplacian64))

sobelx = np.uint8(np.absolute(sobelx64))

sobely = np.uint8(np.absolute(sobely64))

plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')

plt.title('Original'), plt.xticks([]), plt.yticks([])

plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')

plt.title('Laplacian'), plt.xticks([]), plt.yticks([])

plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')

plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])

plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')

plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])

plt.show()

Now, if you execute it, you will get the right representation in white on the black

edges of the arrows (as shown in Figure 14-16). As you can see, the edges do not appear

in Sobel X and Sobel Y because they are parallel to the direction of detection (horizontal

and vertical).

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

531

Figure 14-16. The result from the edge detection applied to the blackandwhite.jpg
image

In addition to the edges, you see that the Laplacian and Sobel filters are also able to

detect the level of gradients across a grayscale. Apply what you’ve seen to the gradient.jpg

image. You have to make some changes to the previous code, leaving only one image

(Laplacian) to be shown.

from matplotlib import pyplot as plt

img = cv2.imread('gradients.jpg',0)

laplacian = cv2.Laplacian(img, cv2.CV_64F)

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)

sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)

laplacian64 = cv2.Laplacian(img, cv2.CV_64F)

sobelx64 = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)

sobely64 = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

532

laplacian = np.uint8(np.absolute(laplacian64))

sobelx = np.uint8(np.absolute(sobelx64))

sobely = np.uint8(np.absolute(sobely64))

plt.imshow(laplacian,cmap = 'gray')

plt.title('Laplacian'), plt.xticks([]), plt.yticks([])

plt.show()

By executing this code, you will get an image showing the white borders on a black

background (as shown in Figure 14-17).

 A Deep Learning Example: The Face Detection
In this last section of the chapter, you will shift your attention to another highly studied

and used case in computer vision, face detection.

This is a far more complex case than edge detection, and it is based on identifying

human faces in an image. Given the complexity of the problem, face detection uses deep

learning. In fact at the base of this technique, there are neural networks that are specially

designed to recognize different subjects, including the faces of a person, in a photo.

Object detection techniques also work very similarly. So this example will be very useful

to fully understand the heart of computer vision, that of interpreting the subjects present

in a photo.

Figure 14-17. The result from the edge detection applied to the gradients.jpg
image

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

533

In this example, you will use an already learned neural network. In fact, educating a

neural network for this kind of problem can be a complex operation and require a great

deal of time and resources.

Fortunately, on the web, there are some neural networks already trained to perform

these kinds of operations, and for this test you will use a model developed using the

Caffe2 framework (see Chapter 9 for more information).

When you want to use a deep neural network module with Caffe models in the

OpenCV environment, you need two types of files, as follows:

• A prototxt file, which defines the model architecture (i.e., the layers

themselves). You will use a deploy.prototxt.txt file downloaded

from the web (https://github.com/opencv/opencv/blob/master/

samples/dnn/face_detector/deploy.prototxt).

• The second type of file is a caffemodel file, which contains the weights

for the actual layers in the deep neural network. This file is the

most important because it contains all the “learning” of that neural

network to perform a given task. For your purposes, a caffemodel file

is available at https://github.com/opencv/opencv_3rdparty/tree/

dnn_samples_face_detector_20170830.

Note you can also find these files in the source code of the book.

Now that you have everything you need, start by uploading the neural network

model and all the information about your learning.

The OpenCV library supports many deep learning frameworks, and it has many

features in it that help you with this. In particular (mentioned at the beginning of the

chapter), OpenCV has the dnn module, which specializes in these kinds of operations.

To load a learned neural network you can use the dnn.readNetFromCaffe()

function.

net = cv2.dnn.readNetFromCaffe('deploy.prototxt.txt', 'res10_300x300_ssd_

iter_140000.caffemodel')

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv_3rdparty/tree/dnn_samples_face_detector_20170830
https://github.com/opencv/opencv_3rdparty/tree/dnn_samples_face_detector_20170830

534

As a test image, you can use the photo with the players of the Italian national team,

italy2018.jpg. This image is a great example, as there are many faces inside.

image = cv2.imread('italy2018.jpg')

(h, w) = image.shape[:2]

Another function, called dnn.blobFromImage(), takes care of preprocessing the

image to be adapted to neural networks. For example, resize the image to 300x300 pixels

so that it can be used by the caffemodel file that has been trained for images of this size.

blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300),

(104.0, 177.0, 123.0))

Then define a confidence threshold with an optimal value of 0.5.

confidence_threshold = 0.5

And finally perform the face detection test.

net.setInput(blob)

detections = net.forward()

for i in range(0, detections.shape[2]):

 confidence = detections[0, 0, i, 2]

 if confidence > confidence_threshold:

 box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])

 (startX, startY, endX, endY) = box.astype("int")

 text = "{:.2f}%".format(confidence * 100)

 y = startY - 10 if startY - 10 > 10 else startY + 10

 cv2.rectangle(image, (startX, startY), (endX, endY),(0, 0, 255), 2)

 cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX,

0.45, (0, 0, 255), 2)

cv2.imshow("Output", image)

cv2.waitKey(0)

By executing the code, a window will appear with the results of processing the face

detection (shown in Figure 14-18). The results are incredible, since the faces of all the

players have been detected. You can see the faces surrounded by a red square that

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

535

Figure 14-18. The faces of the national football players have all been accurately
recognized

highlights them in the image with a percentage of confidence. Confidence percentages

are all greater than 50% for the confidence_threshold parameter that we specified at

the start of the test.

 Conclusions
In this chapter, you saw some simple examples of techniques that form the basis of

image analysis and in particular of computer vision. In fact, you saw how images are

processed through image filters, and how some complex techniques can be built using

edge detection. You also saw how computer vision works by using deep learning neural

networks to recognize faces in an image (face detection).

I hope this chapter is a good starting point for your further insights on the subject.

If you are interested, you will find in-depth information on this topic on my website at

https://meccanismocomplesso.org.

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

https://meccanismocomplesso.org

537
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1

APPENDIX A

Writing Mathematical
Expressions with LaTeX
LaTeX is extensively used in Python. In this appendix there are many examples that can

be useful to represent LaTeX expressions inside Python implementations. This same

information can be found at the link http://matplotlib.org/users/mathtext.html.

With matplotlib
You can enter the LaTeX expression directly as an argument of various functions that can

accept it. For example, the title() function that draws a chart title.

import matplotlib.pyplot as plt

%matplotlib inline

plt.title(r'$\alpha > \beta$')

With IPython Notebook in a Markdown Cell
You can enter the LaTeX expression between two '$$'.

$$c = \sqrt{a^2 + b^2}$$

c = a +b2 2

https://doi.org/10.1007/978-1-4842-3913-1
http://matplotlib.org/users/mathtext.html

538

With IPython Notebook in a Python 2 Cell
You can enter the LaTeX expression within the Math() function.

from IPython.display import display, Math, Latex

display(Math(r'F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx'))

Subscripts and Superscripts
To make subscripts and superscripts, use the ‘_’ and ‘^’ symbols:

r'$\alpha_i > \beta_i$'

a bi i>

This could be very useful when you have to write summations:

r'$\sum_{i=0}^\infty x_i$'

i=0

¥

åxi

Fractions, Binomials, and Stacked Numbers
Fractions, binomials, and stacked numbers can be created with the \frac{}{}, \binom{}{},

and \stackrel{}{} commands, respectively:

r'$\frac{3}{4} \binom{3}{4} \stackrel{3}{4}$'

3

4

3

4

3

4æ

è
ç

ö

ø
÷

Fractions can be arbitrarily nested:

5
1

4

-
x

Appendix A Writing MAtheMAticAl expressions With lAtex

539

Note that special care needs to be taken to place parentheses and brackets around

fractions. You have to insert \left and \right preceding the bracket in order to inform the

parser that those brackets encompass the entire object:

5
1

4

-
x

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

Radicals
Radicals can be produced with the \sqrt[]{} command.

r'$\sqrt{2}$'

2

Fonts
The default font is italics for mathematical symbols. To change fonts, for example with

trigonometric functions as sin:

s t = Asin 2 t() ()w

The choices available with all fonts are

from IPython.display import display, Math, Latex

display(Math(r'\mathrm{Roman}'))

display(Math(r'\mathit{Italic}'))

display(Math(r'\mathtt{Typewriter}'))

display(Math(r'\mathcal{CALLIGRAPHY}'))

Appendix A Writing MAtheMAticAl expressions With lAtex

540

Accents
An accent command may precede any symbol to add an accent above it. There are long

and short forms for some of them.

\acute a or \'a

\bar a

\breve a

\ddot a or \"a

\dot a or \.a

\grave a or \`a

\hat a or \^a

\tilde a or \~a

\vec a

\overline{abc}

Symbols
You can also use a large number of the TeX symbols.

Lowercase Greek

\alpha \beta \chi \delta \digamma

\epsilon \eta \gamma \iota \kappa

\lambda \mu \nu \omega \phi

 \pi \psi \rho \sigma \tau

 \theta \upsilon \varepsilon \varkappa \varphi

\varpi \varrho \varsigma \vartheta \xi

 \zeta

Appendix A Writing MAtheMAticAl expressions With lAtex

541

Uppercase Greek

\delta \gamma \lambda \omega \phi \pi

 \psi \sigma \theta \Upsilon \xi \mho

\nabla

Hebrew

 \aleph \beth \daleth \gimel

Delimiters

 / [\downarrow \Uparrow \Vert \backslash

\downarrow \langle \lceil \lfloor \llcorner \lrcorner

 \rangle \rceil \rfloor \ulcorner \uparrow \urcorner

 \vert \{ \| \}] |

Big Symbols

\bigcap \bigcup \bigodot \bigoplus \bigotimes

\biguplus \bigvee \bigwedge \coprod \int

 \oint \prod \sum

Appendix A Writing MAtheMAticAl expressions With lAtex

542

Standard Function Names

 \pr \arccos \arcsin \arctan

 \arg \cos \cosh \cot

 \coth \csc \deg \det

 \dim \exp \gcd \hom

 \inf \ker
 \lg \lim

\liminf \limsup \ln \log

 \max \min \sec \sin

 \sinh \sup \tan \tanh

Binary Operation and Relation Symbols

 \Bumpeq \cap \cup

 \doteq \Join \subset

 \supset \Vdash \Vvdash

 \approx \approxeq \ast

 \asymp \backepsilon \backsim

 \backsimeq \barwedge \because

 \between \bigcirc \bigtriangledown

\bigtriangleup \blacktriangleleft \blacktriangleright

 \bot \bowtie \boxdot

 \boxminus \boxplus \boxtimes

 \bullet \bumpeq \cap

 \cdot \circ \circeq

 \coloneq \cong \cup

\curlyeqprec \curlyeqsucc \curlyvee

 \curlywedge \dag \dashv

(continued)

Appendix A Writing MAtheMAticAl expressions With lAtex

543

 \ddag \diamond \div

\divideontimes \doteq \doteqdot

 \dotplus \doublebarwedge \eqcirc

 \eqcolon \eqsim \eqslantgtr

\eqslantless \equiv \fallingdotseq

 \frown \geq \geqq

 \geqslant \gg \ggg

 \gnapprox \gneqq \gnsim

 \gtrapprox \gtrdot \gtreqless

 \gtreqqless \gtrless \gtrsim

 \in \intercal \leftthreetimes

 \leq \leqq \leqslant

 \lessapprox \lessdot \lesseqgtr

 \lesseqqgtr \lessgtr \lesssim

 \ll \lll \lnapprox

 \lneqq \lnsim \ltimes

 \mid \models \mp

 \nVdash \nVdash \napprox

 \ncong \ne \neq

 \neq \nequiv \ngeq

 \ngtr \ni \nleq

 \nless \nmid \notin

 \nparallel \nprec \nsim

(continued)

Appendix A Writing MAtheMAticAl expressions With lAtex

544

 \nsubset \nsubseteq \nsucc

 \nsupset \nsupseteq \ntriangleleft

\ntrianglelefteq \ntriangleright \ntrianglerighteq

 \nvdash \nvdash \odot

 \ominus \oplus \oslash

 \otimes \parallel \perp

 \pitchfork \pm \prec

 \precapprox \preccurlyeq \preceq

 \precnapprox \precnsim \precsim

 \propto \rightthreetimes \risingdotseq

 \rtimes \sim \simeq

 \slash \smile \sqcap

 \sqcup \sqsubset \sqsubset

 \sqsubseteq \sqsupset \sqsupset

 \sqsupseteq \star \subset

 \subseteq \subseteqq \subsetneq

 \subsetneqq \succ \succapprox

 \succcurlyeq \succeq \succnapprox

 \succnsim \succsim \supset

 \supseteq \supseteqq \supsetneq

 \supsetneqq \therefore \times

 \top \triangleleft \trianglelefteq

 \triangleq \triangleright \trianglerighteq

 \uplus \vdash \varpropto

\vartriangleleft \vartriangleright \vdash

 \vee \veebar \wedge

 \wr

Appendix A Writing MAtheMAticAl expressions With lAtex

545

Arrow Symbols

 \downarrow \leftarrow

 \leftrightarrow \lleftarrow

 \longleftarrow \longleftrightarrow

 \longrightarrow \lsh

 \nearrow \nwarrow

 \rightarrow \rrightarrow

 \rsh \searrow

 \swarrow \Uparrow

 \Updownarrow \circlearrowleft

 \circlearrowright \curvearrowleft

 \curvearrowright \dashleftarrow

 \dashrightarrow \downarrow

 \downdownarrows \downharpoonleft

 \downharpoonright \hookleftarrow

 \hookrightarrow \leadsto

 \leftarrow \leftarrowtail

 \leftharpoondown \leftharpoonup

 \leftleftarrows \leftrightarrow

 \leftrightarrows \leftrightharpoons

 \leftrightsquigarrow \leftsquigarrow

 \longleftarrow \longleftrightarrow

 \longmapsto \longrightarrow

 \looparrowleft \looparrowright

 \mapsto \multimap

 \nleftarrow \nleftrightarrow

 \nrightarrow \nearrow

 \nleftarrow \nleftrightarrow

(continued)

Appendix A Writing MAtheMAticAl expressions With lAtex

546

 \nrightarrow \nwarrow

 \rightarrow \rightarrowtail

 \rightharpoondown \rightharpoonup

 \rightleftarrows \rightleftarrows

 \rightleftharpoons \rightleftharpoons

 \rightrightarrows \rightrightarrows

 \rightsquigarrow \searrow

 \swarrow \to

 \twoheadleftarrow \twoheadrightarrow

 \uparrow \updownarrow

 \updownarrow \upharpoonleft

 \upharpoonright \upuparrows

Miscellaneous Symbols

 \$ \AA \Finv

 \game \im \p

 \re \s \angle

 \backprime \bigstar \blacksquare

\blacktriangle \blacktriangledown \cdots

 \checkmark \circledr \circleds

 \clubsuit \complement \copyright

 \ddots \diamondsuit \ell

 \emptyset \eth \exists

 \flat \forall \hbar

 \heartsuit \hslash \iiint

(continued)

Appendix A Writing MAtheMAticAl expressions With lAtex

547

 \iint \iint \imath

 \infty \jmath \ldots

\measuredangle \natural \neg

 \nexists \oiiint \partial

 \prime \sharp \spadesuit

\sphericalangle \ss \triangledown

 \varnothing \vartriangle \vdots

 \wp \yen

Appendix A Writing MAtheMAticAl expressions With lAtex

549
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1

APPENDIX B

Open Data Sources

Political and Government Data
Data.gov

http://data.gov

This is the resource for most government-related data.

Socrata

http://www.socrata.com/resources/

Socrata is a good place to explore government-related data. Furthermore, it provides

some visualization tools for exploring data.

US Census Bureau

http://www.census.gov/data.html

This site provides information about US citizens covering population data, geographic

data, and education.

UN3ta

https://data.un.org/

UNdata is an Internet-based data service which brings UN statistical databases.

European Union Open Data Portal

http://open-data.europa.eu/en/data/

This site provides a lot of data from European Union institutions.

https://doi.org/10.1007/978-1-4842-3913-1
http://data.gov/
http://www.socrata.com/resources/
http://www.census.gov/data.html
https://data.un.org/
http://open-data.europa.eu/en/data/

550

Data.gov.uk

http://data.gov.uk/

This site of the UK Government includes the British National Bibliography: metadata

on all UK books and publications since 1950.

The CIA World Factbook

https://www.cia.gov/library/publications/the-world-factbook/

This site of the Central Intelligence Agency provides a lot of information on history,

population, economy, government, infrastructure, and military of 267 countries.

Health Data
Healthdata.gov

https://www.healthdata.gov/

This site provides medical data about epidemiology and population statistics.

NHS Health and Social Care Information Centre

http://www.hscic.gov.uk/home

Health data sets from the UK National Health Service.

Social Data
Facebook Graph

https://developers.facebook.com/docs/graph-api

Facebook provides this API which allows you to query the huge amount of

information that users are sharing with the world.

Topsy

http://topsy.com/

Topsy provides a searchable database of public tweets going back to 2006 as well as

several tools to analyze the conversations.

Appendix B Open dAtA SOurceS

http://data.gov.uk/
https://www.cia.gov/library/publications/the-world-factbook/
https://www.healthdata.gov/
http://www.hscic.gov.uk/home
https://developers.facebook.com/docs/graph-api
http://topsy.com/

551

Google Trends

http://www.google.com/trends/explore

Statistics on search volume (as a proportion of total search) for any given term,

since 2004.

Likebutton

http://likebutton.com/

Mines Facebook’s public data—globally and from your own network—to give an

overview of what people “Like” at the moment.

Miscellaneous and Public Data Sets
Amazon Web Services public datasets

http://aws.amazon.com/datasets

The public data sets on Amazon Web Services provide a centralized repository of

public data sets. An interesting dataset is the 1000 Genome Project, an attempt to build

the most comprehensive database of human genetic information. Also a NASA database

of satellite imagery of Earth is available.

DBPedia

http://wiki.dbpedia.org

Wikipedia contains millions of pieces of data, structured and unstructured, on

every subject. DBPedia is an ambitious project to catalogue and create a public, freely

distributable database allowing anyone to analyze this data.

Freebase

http://www.freebase.com/

This community database provides information about several topics, with over 45

million entries.

Appendix B Open dAtA SOurceS

http://www.google.com/trends/explore
http://likebutton.com/
http://aws.amazon.com/datasets#http://aws.amazon.com/datasets
http://wiki.dbpedia.org/
http://www.freebase.com/

552

Gapminder

http://www.gapminder.org/data/

This site provides data coming from the World Health Organization and World Bank

covering economic, medical, and social statistics from around the world.

Financial Data
Google Finance

https://www.google.com/finance

Forty years’ worth of stock market data, updated in real time.

Climatic Data
National Climatic Data Center

http://www.ncdc.noaa.gov/data-access/quick-links#loc-clim

Huge collection of environmental, meteorological, and climate data sets from the US

National Climatic Data Center. The world’s largest archive of weather data.

WeatherBase

http://www.weatherbase.com/

This site provides climate averages, forecasts, and current conditions for over 40,000

cities worldwide.

Wunderground

http://www.wunderground.com/

This site provides climatic data from satellites and weather stations, allowing you to

get all information about the temperature, wind, and other climatic measurements.

Appendix B Open dAtA SOurceS

http://www.gapminder.org/data/
https://www.google.com/finance
http://www.ncdc.noaa.gov/data-access/quick-links#loc-clim
http://www.weatherbase.com/
http://www.wunderground.com/

553

Sports Data
Pro-Football-Reference

http://www.pro-football-reference.com/

This site provides data about football and several other sports.

Publications, Newspapers, and Books
New York Times

http://developer.nytimes.com/docs

Searchable, indexed archive of news articles going back to 1851.

Google Books Ngrams

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

This source searches and analyzes the full text of any of the millions of books

digitized as part of the Google Books project.

Musical Data
Million Song Data Set

http://aws.amazon.com/datasets/6468931156960467

Metadata on over a million songs and pieces of music. Part of Amazon Web Services.

Appendix B Open dAtA SOurceS

http://www.pro-football-reference.com/
http://developer.nytimes.com/docs#http://developer.nytimes.com/docs
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://aws.amazon.com/datasets/6468931156960467

555
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1

Index

A
Accents, LaTeX, 540–547
Advanced Data aggregation

apply() functions, 225
transform() function, 226

Anaconda, 24, 88
Anderson Iris Dataset, see Iris flower

dataset
Array manipulation

joining arrays
column_stack() and row_stack(), 72
hstack() function, 71
vstack() function, 71

splitting arrays
hsplit() function, 72
split() function, 73–74
vsplit() function, 72

Artificial intelligence, 5, 350
schematization of, 352

Artificial neural networks
biological networks, 361
edges, 356
hidden layer, 357
input and output layer, 357
multi layer perceptron, 360
nodes, 356
schematization of, 355–356
SLP (see Single layer perceptron (SLP))
weight, 356

B
Bar chart

3D, 306–307
error bars, 281
horizontal, 281–282
matplotlib, 278
multiserial, 282–284
multiseries stacked bar, 286–290
pandas DataFrame, 285–286
representations, 291
stacked bar charts, 290
x-axis, 280
xticks() function, 279

Bayesian methods, 4
Big Data, 353
Bigrams, 498
Biological neural networks, 361
Blending operation, 520

C
Caffe2, 355
Chart typology, 267
Choropleth maps

D3 library, 459
geographical representations, 459
HTML() function, 461–462
jinja2, 462–463
JSON and TSV, 463

https://doi.org/10.1007/978-1-4842-3913-1

556

JSON TopoJSON, 460
require.config(), 461
results, 464
US population, 2014

data source census.gov, 467
file TSV, codes, 466
HTML() function, 468
jinja2.Template, 469
pop2014_by_county

dataframe, 465–466
population.csv, 467–468
render() function, 470–471
SUMLEV values, 464

Classification and regression trees, 12
Classification models, 12
Climatic data, 552
Clustered bar chart

IPython Notebook, 454–455
jinja2, 455, 457–458
render() function, 458–459

Clustering models, 4, 11–12
Collocations, 498
Computer vision, 507
Concatenation

arrays, 188
combining, 191, 193
concat() function, 189–190
dataframe, 191
keys option, 190
pivoting, 193

hierarchical indexing, 193
long to wide format, 195
stack() function, 194
unstack() function, 194

removing, 196
Correlation, 129–131
Covariance, 129–131

Cross-validation, 13
Cython, 22

D
Data aggregation

apply() functions, 226, 228–229
GroupBy, 217

groupby() function, 219
operations, 218
output of, 220
SPLIT-APPLY-COMBINE, 218

hierarchical grouping, 220–221
merge(), 226
numeric and string values, 219
price1 column, 219
transform() function, 225

Data analysis
charts, 2
data visualization, 2
definition, 1
deployment phase, 2
information, 6
knowledge, 6
knowledge domains

computer science, 3
disciplines, 3
fields of application, 5
machine learning and artificial

intelligence, 5
mathematics and statistics, 4
problems of, 3

open data, 15–16
predictive model, 2
process

data sources, 9
deployment, 13
exploration/visualization, 10–11

Choropleth maps (cont.)

Index

557

extraction, 9–10
model validation, 13
planning phase, 9
predictive modeling, 12
preparation, 10
problem definition, 8
stages, 6–8

purpose of, 1
Python and, 17
quantitative and qualitative, 14
types

categorical data, 6
numerical data, 6

DataFrame
pandas

definition, 103–105
nested dict, 111
operations, 121
structure, 103
transposition, 111

structure, 102
Data manipulation

aggregation (see Data aggregation)
concatenation, 188
discretization and binning, 204
group iteration, 222
permutation, 210
phases of, 181
preparation (see Data preparation)
string (see String manipulation)
transformation, 197

Data preparation, 181
DataFrame, 182
merging operation, 182
pandas.concat(), 182
pandas.DataFrame.combine_

first(), 182

pandas.merge(), 182
procedures of, 181

Data structures, operations
DataFrame and series, 121–122
flexible arithmetic

methods, 120–121
Data transformation

drop_duplicates() function, 199
mapping

adding values, 201
axes, 202
dict objects, 199
replacing values, 199

remove duplicates, 198–199
Data visualization

adding text
axis labels, 251–252
informative label, 254
mathematical expression, 254–255
modified of, 252
text() function, 253

bar chart (see Bar chart)
chart typology, 267
contour plot/map, 297–299
data analysis, 231
3D surfaces, 302, 304
grid, 256
grids, subplots, 309
handling date values, 264–267
histogram, 277–278
installation, 233
IPython and IPython

QtConsole, 233, 235
kwargs

figures and axes, 249
horizontal subplots, 249–250
linewidth, 248

Index

558

plot() function, 249
vertical subplots, 250–251

legend
chart of, 258
legend() function, 257, 258
multiseries chart, 259
upper-right corner, 257

line chart (see Line chart)
matplotlib architecture and

NumPy, 247
matplotlib library (see matplotlib

library)
mplot3d, 302
multi-panel plots

grids, subplots, 309, 311
subplots, 307–309

pie charts, 292
axis() function, 293
modified chart, 294
pandas Dataframe, 296
pie() function, 292
shadow kwarg, 295

plotting window
buttons of, 241
commands, 241
matplotlib and NumPy, 246
plt.plot() function, 242, 243
properties, 243
QtConsole, 241–242

polar chart, 299, 301
pyplot module, 239
saving, charts

HTML file, 262–263
image file, 264
source code, 260–261

scatter plot, 3D, 304–305
Decision trees, 11

Deep learning, 349, 532
artificial (see Artificial neural

networks)
artificial intelligence, 350
data availability, 353
machine learning, 351
neural networks and GPUs, 352
Python

frameworks, 354
programming language, 354

schematization of, 352
TensorFlow (see TensorFlow)

Digits dataset
definition, 475
digits.images array, 477
digit.targets array, 478
handwritten digits, 477
handwritten number images, 475
matplotlib library, 477
scikit-learn library, 476

Discretization and binning, 204
any() function, 210
categorical type, 206
cut() function, 205–206, 208–209
describe() function, 209
detecting and filtering

outliers, 209
qcut(), 208–209
std() function, 210
value_counts() function, 206

Django, 17
Dropping, 117–118

E
Eclipse (pyDev), 41–42
Element-wise computation, 47
Expression-oriented programming, 33

Data visualization (cont.)

Index

559

F
Financial data, 552
Flexible arithmetic methods, 120–121
Fonts, LaTeX, 539

G
Gradient theory, 523
Graphics Processing Unit (GPU), 353
Grouping, 11
Group iteration

chain of transformations, 222, 224
functions on groups

mark() function, 224–225
quantiles() function, 224

GroupBy object, 222

H
Handwriting recognition

digits dataset, 475–478
handwritten digits, matplotlib

library, 478
learning and predicting, 478, 480, 482
OCR software, 473
scikit-learn, 474–475
svc estimator, 480
TensorFlow, 480
validation set, six digits, 479

Health data, 550
Hierarchical indexing

arrays, 136–137
DataFrame, 135
reordering and sorting levels, 137–138
stack() function, 136
statistic levels, 138
structure, 134
two-dimensional structure, 134

I
IDEs, see Interactive development

environments (IDEs)
Image analysis

concept of, 521
convolutions, 523
definition, 507
edge detection, 522, 525

blackandwhite.jpg
image, 526–529, 531

black and white system, 525
filters function, 528
gradients.jpg image, 532
gray gradients, 525
Laplacian and Sobel filters, 531
results, 528
source code, 530

face detection, 532
gradient theory, 523
OpenCV (see Open Source Computer

Vision (OpenCV))
operations, 508
representation of, 522

Indexing functionalities
arithmetic and data

alignment, 118, 120
dropping, 117–118
reindexing, 114, 116

Integration, 47
Interactive development environments

(IDEs)
Eclipse (pyDev), 41–42
Komodo, 45
Liclipse, 43–46
NinjaIDE, 44–45
Spyder, 41
Sublime, 42–43

Index

560

Interactive programming language, 20
Interfaced programming language, 20
Internet of Things (IoT), 353
Interpreted programming language, 20
Interpreter

characterization, 21
Cython, 22
Jython, 22
PVM, 21
PyPy, 22
tokenization, 21

IPython
and IPython QtConsole, 233–234
Jupyter project logo, 37
Notebook, 39, 474

DataFrames, 420
QtConsole, 38
shell, 36
tools of, 35

Iris flower dataset
Anderson Iris Dataset, 316
IPython QtConsole, 316
Iris setosa features, 318–319
length and width,

petal, 319–320
matplotlib library, 318
PCA decomposition, 320
target attribute, 317
types of analysis, 316
variables, 319–320

J
JavaScript D3 Library

bar chart, 454
CSS definitions, 450–451
data-driven documents, 449
HTML importing library, 450

IPython Notebooks, 449
Jinja2 library, 451–453
pandas dataframe, 453
render() function, 453
require.config() method, 450
web chart creation, 450

Jinja2 library, 451–453
Jython, 22

K
K-nearest neighbors classification

decision boundaries, 325–326
2D scatterplot, sepals, 324
predict() function, 323
random.permutation(), 323
training and testing set, 322

L
LaTeX

accents, 540–547
fonts, 539
fractions, binomials, and stacked

numbers, 538–539
with IPython Notebook

in Markdown Cell, 537
in Python 2 Cell, 538

with matplotlib, 537
radicals, 539
subscripts and superscripts, 538
symbols

arrow symbols, 540, 545–546
big symbols, 542
binary operation and relation

symbols, 542–543
Delimiters, 540–541
Hebrew, 541

Index

561

lowercase Greek, 540
miscellaneous symbols, 540
standard function names, 542
uppercase Greek, 541

Learning phase, 378
Liclipse, 43–46
Linear regression, 12
Line chart

annotate(), 274
arrowprops kwarg, 274
Cartesian axes, 273
color codes, 270–271
data points, 267
different series, 269
gca() function, 273
Greek characters, 272
LaTeX expression, 274
line and color styles, 270
mathematical expressions, 275
mathematical function, 268
pandas, 276
plot() function, 268
set_position() function, 273
xticks() and yticks() functions, 271

Linux distribution, 90
LOD cloud diagram, 16
Logistic regression, 12

M
Machine learning (ML), 5

algorithm development process, 313
deep learning, 351
diabetes dataset, 327–328
features/attributes, 314
Iris flower dataset, 316
learning problem, 314
linear/least square regression

coef_ attribute, 329
fit() function, 329
linear correlation, 330
parameters, 328
physiological factors and

progression of diabetes, 332–333
single physiological factor, 330

schematization of, 352
supervised learning, 314
SVM (see Support vector machines

(SVMs))
training and testing set, 315
unsupervised learning, 314–315

Mapping
adding values, 201–202
inplace option, 204
rename() function, 204
renaming, axes, 202, 204
replacing values, 199, 201

Mathematical expressions with LaTeX,
see LaTeX

MATLAB, 17
matplotlib, 48
matplotlib library

architecture
artist layer, 236–238
backend layer, 236
functions and tools, 235
layers, 235
pylab and pyplot, 238–239
scripting layer (pyplot), 238

artist layer
graphical representation, 237
hierarchical structure, 236
primitive and composite, 237

graphical representation, 231, 233
LaTeX, 232
NumPy, 246

Index

562

Matrix product, 60
Merging operation

DataFrame, 183–184
dataframe objects, 183
index, 187
join() function, 187–188
JOIN operation, 182
left_index/right_index

options, 187
left join, right join and

outer join, 186
left_on and right_on, 185, 187
merge() function, 183, 184

Meteorological data, 409
Adriatic Sea and Po Valley, 410

cities, 412
Comacchio, 413
image of, 411
mountainous areas, 410
reference standards, 412
TheTimeNow website, 413

climate, 409
data source

JSON file, 414
Weather Map site, 414

IPython Notebook
chart representation, 425, 429, 431
CSV files, 421
DataFrames, 422, 432
humidity function, 433–435
linear regression, 431
matplotlib library, 423
Milan, 423
read_csv() function, 421
result, 423
shape() function, 422
SVR method, 428–429
temperature, 424, 426–427, 432

Jupyter Notebook, 415
access internal data, 417
command line, 415
dataframe, 419–420
extraction procedures, 418
Ferrara, 416
JSON file, 416
json.load() function, 415
parameters, 419
prepare() function, 420

RoseWind (see RoseWind)
wind speed, 441

Microsoft excel files
dataframe, 162
data.xls, 160, 162
internal module xlrd, 160
read_excel() function, 161

MongoDB, 178–179
Multi Layer Perceptron (MLP)

artificial networks, 360
evaluation of, 404
experimental data, 404
hidden layers, 397
IPython session, 387
learning phase, 389
model definition, 387
test phase and accuracy

calculation, 395, 402
Musical data, 553

N
Natural Language Toolkit (NLTK)

bigrams and collocations, 498
common_contexts() function, 493
concordance() function, 493
corpora, 488
downloader tool, 489

Index

563

fileids() function, 491
HTML pages, text, 501
len() function, 491
library, 489
macbeth variable, 491
Python library, 488
request() function, 502
selecting words, 497
sentimental analysis, 502
sents() function, 492
similar() function, 494
text, network, 500
word frequency, 494

macbeth variable, 495
most_common() function, 494
nltk.download() function, 495
nltk.FreqDist() function, 494
stopwords, 495
string() function, 496

word search, 493
Ndarray, 47

array() function, 51–53
data, types, 53–54
dtype (data-type), 50, 54
intrinsic creation, 55–57
type() function, 51–52

NOSE MODULE, 91
“Not a Number” data

filling, NaN occurrences, 133
filtering out NaN

values, 132–133
NaN value, 131–132

NumPy library
array manipulation (see Array

manipulation)
basic operations

aggregate functions, 62
arithmetic operators, 57–59

increment and decrement
operators, 60–61

matrix product, 59–60
ufunc, 61

broadcasting
compatibility, 77
complex cases, 78–79
operator/function, 76

BSD, 50
conditions and Boolean arrays, 69
copies/views of objects, 75
data analysis, 49
indexing, 63

bidimensional array, 64
monodimensional ndarray, 63
negative index value, 63

installation, 50
iterating an array, 67–69
ndarray (see Ndarray)
Numarray, 49
python language, 49
reading and writing array data, 82
shape manipulation, 70–71
slicing, 65–66
structured arrays, 79
vectorization, 76

O
Object-oriented programming language, 20
OCR, see Optical Character Recognition

(OCR) software
Open data, 15–16
Open data sources, 353

climatic data, 552
demographics

IPython Notebook, 446
matplotlib, 449

Index

564

pandas dataframes, 446–447
pop2014_by_state dataframe, 448
pop2014 dataframe, 447–448
United States Census

Bureau, 445–446
financial data, 552
health data, 550
miscellaneous and public

data sets, 551–552
musical data, 553
political and government

data, 549–550
publications, newspapers,

and books, 553
social data, 550–551
sports data, 553

Open Source Computer Vision (OpenCV)
deep learning, 509
image processing and analysis, 509

add() function, 515
blackish image, 518
blending, 520
destroyWindow() method, 512
elementary operations, 514
imread() method, 510
imshow() method, 511
load and display, 510
merge() method, 513
NumPy matrices, 519
saving option, 514
waitKey() method, 511
working process, 512

installation, 509
MATLAB packages, 508
start programming, 510

Open-source programming
language, 21

Optical Character Recognition (OCR)
software, 473

order() function, 127

P
Pandas dataframes, 446, 453
Pandas data structures

DataFrame, 102–105
assigning values, 107–109
deleting column, 110
element selection, 105–107
filtering, 110
membership value, 109–110
nested dict, 111
transposition, 111

evaluating values, 98–99
index objects, 112

duplicate labels, 112–113
methods, 112

NaN values, 99, 101
NumPy arrays and existing

series, 96–97
operations, 120–122
operations and mathematical

functions, 97–98
series, 93

assigning values, 95
declaration, 94
dictionaries, 101
filtering values, 97
index, 93
internal elements, selection, 95
operations, 102

Pandas library, 87
correlation and covariance, 129–131
data structures (see Pandas data

structures)

Open data sources (cont.)

Index

565

function application and mapping
element, 123
row/column, 123, 125
statistics, 125

getting started, 92
hierarchical indexing and

leveling, 134–135, 137–138
indexes (see Indexing functionalities)
installation

Anaconda, 88–89
development phases, 91
Linux, 90
module repository, Windows, 90
PyPI, 89
source, 90
testing, 91

“Not a Number” data, 131–134
python data analysis, 87–88
sorting and ranking, 126–129

Permutation
new_order array, 211
np.random.randint() function, 211
numpy.random.permutation()

function, 210
random sampling, 211

DataFrame, 211
take() function, 211

Pickle—python object serialization
cPickle, 168
frame.pkl, 170
pandas library, 169
stream of bytes, 168

Political and government
data, 549–550

pop2014_by_county dataframe, 465
pop2014_by_state dataframe, 448–449
pop2014 dataframe, 447–448
Portable programming language, 20

PostgreSQL, 174
Principal component analysis

(PCA), 320, 322
Public data sets, 551–552
PVM, see Python virtual machine (PVM)
pyplot module

interactive chart, 239
Line2D object, 240
plotting window, 240

show() function, 240
PyPy interpreter, 22
Python, 17

data analysis library, 87–88
deep learning, 354
frameworks, 354
module, 91
OpenCV, 508

Python Package Index (PyPI), 39, 89
Python’s world

code implementation, 28
distributions, 24

Anaconda, 24
Enthought Canopy, 26
Python(x,y), 26

IDEs (see Interactive development
environments (IDEs))

installation, 23–24
interact, 28
interpreter (see Interpreter)
IPython (see IPython)
programming language, 19–21
PyPI, 39
Python 2, 23
Python 3, 23
running, entire program code, 27
SciPy

libraries, 46
matplotlib, 48

Index

566

NumPy, 47
pandas, 47

shell, 26
source code

data structure, 30
dictionaries and lists, 31
functional programming, 33
Hello World, 28
index, 32
libraries and functions, 30
map() function, 33
mathematical operations, 29
print() function, 29

writing python code,
indentation, 34–35

Python virtual machine (PVM), 21
PyTorch, 355

Q
Qualitative analysis, 14
Quantitative analysis, 14

R
R, 17
Radial Basis Function (RBF), 340
Radicals, LaTeX, 539
Ranking, 128–129
Reading and writing array

binary files, 82
tabular data, 83–84

Reading and writing data
CSV and textual files

header option, 144
index_col option, 145
myCSV_01.csv, 143

myCSV_03.csv, 145
names option, 145
read_csv() function, 143, 145
read_table() function, 143
.txt extension, 142

databases
create_engine() function, 171
dataframe, 175
pandas.io.sql module, 171
pgAdmin III, 175–176
PostgreSQL, 174
read_sql() function, 172
read_sql_query() function, 177
read_sql_table() function, 177
sqlalchemy, 171
sqlite3, 171

DataFrame objects, 141
functionalities, 141
HDF5 library

data structures, 167
HDFStore, 167
hierarchical data format, 166
mydata.h5, 167

HTML files
data structures, 152
read_html (), 155
web_frames, 156
web pages, 152
web scraping, 152

I/O API Tools, 141–142
JSON data

books.json, 164
frame.json, 164
json_normalize() function, 165
JSONViewer, 162–163
normalization, 164
read_json() and to_json(), 162
read_json() function, 164–165

Python’s world (cont.)

Index

567

Microsoft excel files, 159
NoSQL database

insert() function, 179
MongoDB, 178–180

pickle—python object serialization, 168
RegExp

metacharacters, 146
read_table(), 146
skiprows, 148

TXT files, 147–148
nrows and skiprows options, 149
portion by portion, 149

writing (see Writing data)
XML (see XML)

Regression models, 4, 12
Reindexing, 114–116
RoseWind

DataFrame, 436–437
hist array, 438–439
polar chart, 438, 440–441
scatter plot representation, 438
showRoseWind() function, 439, 441

S
Scikit-learn library, 473

data analysis, 474
k-nearest neighbors classification, 322
PCA, 320
Python module, 313
sklearn.svm.SVC, 475
supervised learning, 315
svm module, 475

SciPy
libraries, 46
matplotlib, 48
NumPy, 47
pandas, 47

Sentimental analysis, 502
document_features()

function, 504
documents, 503
list() function, 504
movie_reviews, 503
negative/positive opinion, 505
opinion mining, 502

Shape manipulation
reshape() function, 70
shape attribute, 70
transpose() function, 71

Single layer perceptron (SLP), 371
accuracy, 359
activation function, 358, 359
architecture, 357
cost optimization, 382
data analysis, 372
evaluation phase, 359
learning phase, 359, 378
model definition, 374

explicitly, 376
implicitly, 376
learning phase, 375
placeholders, 376
tf.add() function, 377
tf.nn.softmax() function, 377

modules, 372
representation, 358
testing set, 385
test phase and accuracy

calculation, 383
training sets, 359

Social data, 550
sort_index() function, 126–128, 138
Sports data, 553
SQLite3, 171
stack() function, 136

Index

568

String manipulation
built-in methods

count() function, 214
error message, 214
index() and find(), 213
join() function, 213
replace() function, 214
split() function, 212
strip() function, 212

regular expressions
findall() function, 215–216
match() function, 216
re.compile() function, 215
regex, 214
re.split() function, 215
split() function, 215

Structured arrays
dtype option, 79, 81
structs/records, 79

Subjective interpretations, 14
Subscripts and superscripts,

LaTeX, 538
Supervised learning

machine learning, 314
scikit-learn, 315

Support vector classification (SVC), 475
decision area, 336
effect, decision boundary, 338–339
nonlinear, 339–341
number of points, C parameter, 337–338
predict() function, 336–337
regularization, 337
support_vectors array, 337
training set, decision space, 334–336

Support vector machines (SVMs)
decisional space, 334
decision boundary, 334
Iris Dataset

decision boundaries, 342
linear decision boundaries, 342–343
polynomial decision boundaries, 344
polynomial kernel, 343–344
RBF kernel, 344
training set, 342

SVC (see Support vector classification
(SVC))

SVR (see Support vector regression
(SVR))

Support vector regression (SVR)
curves, 347
diabetes dataset, 345
linear predictive model, 345
test set, data, 345

swaplevel() function, 137

T
TensorFlow, 349, 354, 362, 480

data flow graph, 362
Google’s framework, 362
installation, 363
IPython QtConsole, 364
MLP (see Multi Layer Perceptron

(MLP))
model and sessions, 364
SLP (see Single layer perceptron (SLP))
tensors

operation, 370
parameters, 366
print() function, 368
representations of, 367
tf.convert_to_tensor() function, 368
tf.ones() method, 369
tf.random_normal() function, 369
tf.random_uniform() function, 369
tf.zeros() method, 368

Index

569

Text analysis techniques
definition, 487
NLTK (see Natural Language Toolkit

(NLTK))
techniques, 488

Theano, 355
trigrams() function, 499

U, V
United States Census Bureau, 445–446
Universal functions (ufunc), 61
Unsupervised learning, 314

W
Web Scraping, 4, 10
Wind speed

polar chart representation, 442
RoseWind_Speed() function, 441
ShowRoseWind() function, 442

ShowRoseWind_Speed() function, 442
to_csv () function, 443

Writing data
HTML files

myFrame.html, 155
to_html() function, 153–154

na_rep option, 151
to_csv() function, 150–151

X, Y, Z
XML

books.xml, 157–158
getchildren(), 158
getroot() function, 158
lxml.etree tree structure, 159
lxml library, 157
objectify, 158
parse() function, 158
tag attribute, 158
text attribute, 159

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: An Introduction to Data Analysis
	Data Analysis
	Knowledge Domains of the Data Analyst
	Computer Science
	Mathematics and Statistics
	Machine Learning and Artificial Intelligence
	Professional Fields of Application

	Understanding the Nature of the Data
	When the Data Become Information
	When the Information Becomes Knowledge
	Types of Data

	The Data Analysis Process
	Problem Definition
	Data Extraction
	Data Preparation
	Data Exploration/Visualization
	Predictive Modeling
	Model Validation
	Deployment

	Quantitative and Qualitative Data Analysis
	Open Data
	Python and Data Analysis
	Conclusions

	Chapter 2: Introduction to the Python World
	Python—The Programming Language
	Python—The Interpreter
	Cython
	Jython
	PyPy

	Python 2 and Python 3
	Installing Python
	Python Distributions
	Anaconda
	Enthought Canopy
	Python(x,y)

	Using Python
	Python Shell
	Run an Entire Program
	Implement the Code Using an IDE
	Interact with Python

	Writing Python Code
	Make Calculations
	Import New Libraries and Functions
	Data Structure
	Functional Programming
	Indentation

	IPython
	IPython Shell
	The Jupyter Project
	Jupyter QtConsole
	Jupyter Notebook

	PyPI—The Python Package Index
	The IDEs for Python
	Spyder
	Eclipse (pyDev)
	Sublime
	Liclipse
	NinjaIDE
	Komodo IDE

	SciPy
	NumPy
	Pandas
	matplotlib

	Conclusions

	Chapter 3: The NumPy Library
	NumPy: A Little History
	The NumPy Installation
	Ndarray: The Heart of the Library
	Create an Array
	Types of Data
	The dtype Option
	Intrinsic Creation of an Array

	Basic Operations
	Arithmetic Operators
	The Matrix Product
	Increment and Decrement Operators
	Universal Functions (ufunc)
	Aggregate Functions

	Indexing, Slicing, and Iterating
	Indexing
	Slicing
	Iterating an Array

	Conditions and Boolean Arrays
	Shape Manipulation
	Array Manipulation
	Joining Arrays
	Splitting Arrays

	General Concepts
	Copies or Views of Objects
	Vectorization
	Broadcasting

	Structured Arrays
	Reading and Writing Array Data on Files
	Loading and Saving Data in Binary Files
	Reading Files with Tabular Data

	Conclusions

	Chapter 4: The pandas Library—An Introduction
	pandas: The Python Data Analysis Library
	Installation of pandas
	Installation from Anaconda
	Installation from PyPI
	Installation on Linux
	Installation from Source
	A Module Repository for Windows

	Testing Your pandas Installation
	Getting Started with pandas
	Introduction to pandas Data Structures
	The Series
	Declaring a Series
	Selecting the Internal Elements
	Assigning Values to the Elements
	Defining a Series from NumPy Arrays and Other Series
	Filtering Values
	Operations and Mathematical Functions
	Evaluating Vales
	NaN Values
	Series as Dictionaries
	Operations Between Series

	The DataFrame
	Defining a Dataframe
	Selecting Elements
	Assigning Values
	Membership of a Value
	Deleting a Column
	Filtering
	DataFrame from Nested dict
	Transposition of a Dataframe

	The Index Objects
	Methods on Index
	Index with Duplicate Labels

	Other Functionalities on Indexes
	Reindexing
	Dropping
	Arithmetic and Data Alignment

	Operations Between Data Structures
	Flexible Arithmetic Methods
	Operations Between DataFrame and Series

	Function Application and Mapping
	Functions by Element
	Functions by Row or Column
	Statistics Functions

	Sorting and Ranking
	Correlation and Covariance
	“Not a Number” Data
	Assigning a NaN Value
	Filtering Out NaN Values
	Filling in NaN Occurrences

	Hierarchical Indexing and Leveling
	Reordering and Sorting Levels
	Summary Statistic by Level

	Conclusions

	Chapter 5: pandas: Reading and Writing Data
	I/O API Tools
	CSV and Textual Files
	Reading Data in CSV or Text Files
	Using RegExp to Parse TXT Files
	Reading TXT Files Into Parts
	Writing Data in CSV

	Reading and Writing HTML Files
	Writing Data in HTML
	Reading Data from an HTML File

	Reading Data from XML
	Reading and Writing Data on Microsoft Excel Files
	JSON Data
	The Format HDF5
	Pickle—Python Object Serialization
	Serialize a Python Object with cPickle
	Pickling with pandas

	Interacting with Databases
	Loading and Writing Data with SQLite3
	Loading and Writing Data with PostgreSQL

	Reading and Writing Data with a NoSQL Database: MongoDB
	Conclusions

	Chapter 6: pandas in Depth: Data Manipulation
	Data Preparation
	Merging
	Merging on an Index

	Concatenating
	Combining
	Pivoting
	Pivoting with Hierarchical Indexing
	Pivoting from “Long” to “Wide” Format

	Removing

	Data Transformation
	Removing Duplicates
	Mapping
	Replacing Values via Mapping
	Adding Values via Mapping
	Rename the Indexes of the Axes

	Discretization and Binning
	Detecting and Filtering Outliers

	Permutation
	Random Sampling

	String Manipulation
	Built-in Methods for String Manipulation
	Regular Expressions

	Data Aggregation
	GroupBy
	A Practical Example
	Hierarchical Grouping

	Group Iteration
	Chain of Transformations
	Functions on Groups

	Advanced Data Aggregation
	Conclusions

	Chapter 7: Data Visualization with matplotlib
	The matplotlib Library
	Installation
	The IPython and IPython QtConsole
	The matplotlib Architecture
	Backend Layer
	Artist Layer
	Scripting Layer (pyplot)
	pylab and pyplot

	pyplot
	A Simple Interactive Chart

	The Plotting Window
	Set the Properties of the Plot
	matplotlib and NumPy

	Using the kwargs
	Working with Multiple Figures and Axes

	Adding Elements to the Chart
	Adding Text
	Adding a Grid
	Adding a Legend

	Saving Your Charts
	Saving the Code
	Converting Your Session to an HTML File
	Saving Your Chart Directly as an Image

	Handling Date Values
	Chart Typology
	Line Charts
	Line Charts with pandas

	Histograms
	Bar Charts
	Horizontal Bar Charts
	Multiserial Bar Charts
	Multiseries Bar Charts with pandas Dataframe
	Multiseries Stacked Bar Charts
	Stacked Bar Charts with a pandas Dataframe
	Other Bar Chart Representations

	Pie Charts
	Pie Charts with a pandas Dataframe

	Advanced Charts
	Contour Plots
	Polar Charts

	The mplot3d Toolkit
	3D Surfaces
	Scatter Plots in 3D
	Bar Charts in 3D

	Multi-Panel Plots
	Display Subplots Within Other Subplots
	Grids of Subplots

	Conclusions

	Chapter 8: Machine Learning with scikit-learn
	The scikit-learn Library
	Machine Learning
	Supervised and Unsupervised Learning
	Supervised Learning
	Unsupervised Learning

	Training Set and Testing Set

	Supervised Learning with scikit-learn
	The Iris Flower Dataset
	The PCA Decomposition

	K-Nearest Neighbors Classifier
	Diabetes Dataset
	Linear Regression: The Least Square Regression
	Support Vector Machines (SVMs)
	Support Vector Classification (SVC)
	Nonlinear SVC
	Plotting Different SVM Classifiers Using the Iris Dataset
	Support Vector Regression (SVR)

	Conclusions

	Chapter 9: Deep Learning with TensorFlow
	Artificial Intelligence, Machine Learning, and Deep Learning
	Artificial intelligence
	Machine Learning Is a Branch of Artificial Intelligence
	Deep Learning Is a Branch of Machine Learning
	The Relationship Between Artificial Intelligence, Machine Learning, and Deep Learning

	Deep Learning
	Neural Networks and GPUs
	Data Availability: Open Data Source, Internet of Things, and Big Data
	Python
	Deep Learning Python Frameworks

	Artificial Neural Networks
	How Artificial Neural Networks Are Structured
	Single Layer Perceptron (SLP)
	Multi Layer Perceptron (MLP)
	Correspondence Between Artificial and Biological Neural Networks

	TensorFlow
	TensorFlow: Google’s Framework
	TensorFlow: Data Flow Graph

	Start Programming with TensorFlow
	Installing TensorFlow
	Programming with the IPython QtConsole
	The Model and Sessions in TensorFlow
	Tensors
	Operation on Tensors

	Single Layer Perceptron with TensorFlow
	Before Starting
	Data To Be Analyzed
	The SLP Model Definition
	Learning Phase
	Test Phase and Accuracy Calculation

	Multi Layer Perceptron (with One Hidden Layer) with TensorFlow
	The MLP Model Definition
	Learning Phase
	Test Phase and Accuracy Calculation

	Multi Layer Perceptron (with Two Hidden Layers) with TensorFlow
	Test Phase and Accuracy Calculation
	Evaluation of Experimental Data

	Conclusions

	Chapter 10: An Example— Meteorological Data
	A Hypothesis to Be Tested: The Influence of the Proximity of the Sea
	The System in the Study: The Adriatic Sea and the Po Valley

	Finding the Data Source
	Data Analysis on Jupyter Notebook
	Analysis of Processed Meteorological Data
	The RoseWind
	Calculating the Mean Distribution of the Wind Speed

	Conclusions

	Chapter 11: Embedding the JavaScript D3 Library in the IPython Notebook
	The Open Data Source for Demographics
	The JavaScript D3 Library
	Drawing a Clustered Bar Chart
	The Choropleth Maps
	The Choropleth Map of the U.S. Population in 2014
	Conclusions

	Chapter 12: Recognizing Handwritten Digits
	Handwriting Recognition
	Recognizing Handwritten Digits with scikit-learn
	The Digits Dataset
	Learning and Predicting
	Recognizing Handwritten Digits with TensorFlow
	Learning and Predicting
	Conclusions

	Chapter 13: Textual Data Analysis with NLTK
	Text Analysis Techniques
	The Natural Language Toolkit (NLTK)
	Import the NLTK Library and the NLTK Downloader Tool
	Search for a Word with NLTK
	Analyze the Frequency of Words
	Selection of Words from Text
	Bigrams and Collocations
	Use Text on the Network
	Extract the Text from the HTML Pages
	Sentimental Analysis

	Conclusions

	Chapter 14: Image Analysis and Computer Vision with OpenCV
	Image Analysis and Computer Vision
	OpenCV and Python
	OpenCV and Deep Learning
	Installing OpenCV
	First Approaches to Image Processing and Analysis
	Before Starting
	Load and Display an Image
	Working with Images
	Save the New Image
	Elementary Operations on Images
	Image Blending

	Image Analysis
	Edge Detection and Image Gradient Analysis
	Edge Detection
	The Image Gradient Theory
	A Practical Example of Edge Detection with the Image Gradient Analysis

	A Deep Learning Example: The Face Detection
	Conclusions

	Appendix A: Writing Mathematical Expressions with LaTeX
	With matplotlib
	With IPython Notebook in a Markdown Cell
	With IPython Notebook in a Python 2 Cell
	Subscripts and Superscripts
	Fractions, Binomials, and Stacked Numbers
	Radicals
	Fonts
	Accents

	Appendix B: Open Data Sources
	Political and Government Data
	Health Data
	Social Data
	Miscellaneous and Public Data Sets
	Financial Data
	Climatic Data
	Sports Data
	Publications, Newspapers, and Books
	Musical Data

	Index

